DeRhamComputation/superelliptic/superelliptic_class.sage
2024-12-21 17:27:41 +01:00

313 lines
10 KiB
Python

class superelliptic:
"""Class of a superelliptic curve. Given a polynomial f(x) with coefficient field F, it constructs
the curve y^m = f(x)"""
def __init__(self, f, m, prec = 100):
Rx = f.parent()
x = Rx.gen()
F = Rx.base()
Rx.<x> = PolynomialRing(F)
Rxy.<x, y> = PolynomialRing(F, 2)
Fxy = FractionField(Rxy)
self.polynomial = Rx(f)
self.exponent = m
self.base_ring = F
self.characteristic = F.characteristic()
self.fct_field = Fxy, Rxy, x, y
r = Rx(f).degree()
delta = GCD(r, m)
self.nb_of_pts_at_infty = delta
self.x = superelliptic_function(self, Rxy(x))
self.y = superelliptic_function(self, Rxy(y))
self.dx = superelliptic_form(self, Rxy(1))
self.one = superelliptic_function(self, Rxy(1))
# We compute now expansions at infinity of x and y.
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
RptW.<W> = PolynomialRing(Rt)
RptWQ = FractionField(RptW)
Rxy.<x, y> = PolynomialRing(F)
RxyQ = FractionField(Rxy)
delta, a, b = xgcd(m, r)
a = -a
M = m/delta
R = r/delta
while a<0:
a += R
b += M
g = (x^r*f(x = 1/x))
gW = RptWQ(g(x = t^M * W^b)) - W^(delta)
self.x_series = []
self.y_series = []
self.dx_series = []
for place in range(delta):
ww = naive_hensel(gW, F, start = root_of_unity(F, delta)^place, prec = prec)
xx = Rt(1/(t^M*ww^b))
yy = 1/(t^R*ww^a)
self.x_series += [xx]
self.y_series += [yy]
self.dx_series += [xx.derivative()]
def __repr__(self):
f = self.polynomial
m = self.exponent
F = self.base_ring
return 'Superelliptic curve with the equation y^' + str(m) + ' = ' + str(f)+' over ' + str(F)
#Auxilliary algorithm that returns the basis of holomorphic differentials
#of the curve and (as a second argument) the list of pairs (i, j)
#such that x^i dx/y^j is holomorphic.
def basis_holomorphic_differentials_degree(self):
f = self.polynomial
m = self.exponent
r = f.degree()
delta = GCD(r, m)
F = self.base_ring
Rx.<x> = PolynomialRing(F)
Rxy.<x, y> = PolynomialRing(F, 2)
Fxy = FractionField(Rxy)
#########basis of holomorphic differentials and de Rham
basis_holo = []
degrees0 = {}
k = 0
for j in range(1, m):
for i in range(1, r):
if (r*j - m*i >= delta):
basis_holo += [superelliptic_form(self, Fxy(x^(i-1)/y^j))]
degrees0[k] = (i-1, j)
k = k+1
return(basis_holo, degrees0)
#Returns the basis of holomorphic differentials using the previous algorithm.
def holomorphic_differentials_basis(self):
basis_holo, degrees0 = self.basis_holomorphic_differentials_degree()
return basis_holo
#Returns the list of pairs (i, j) such that x^i dx/y^j is holomorphic.
def degrees_holomorphic_differentials(self):
basis_holo, degrees0 = self.basis_holomorphic_differentials_degree()
return degrees0
def basis_de_rham_degrees(self):
f = self.polynomial
m = self.exponent
r = f.degree()
genus = self.genus()
delta = GCD(r, m)
F = self.base_ring
Rx.<x> = PolynomialRing(F)
Rxy.<x, y> = PolynomialRing(F, 2)
Fxy = FractionField(Rxy)
basis_holo = self.holomorphic_differentials_basis()
basis = 2*genus*[0]
index = 0
#First g_X elements of basis are holomorphic differentials.
for k in range(0, len(basis_holo)):
basis[index] = superelliptic_cech(self, basis_holo[k], superelliptic_function(self, 0))
index += 1
## Next elements do not come from holomorphic differentials.
t = len(basis)
degrees0 = {}
degrees1 = {}
degrees = self.degrees_holomorphic_differentials()
degrees_inv = {b:a for a, b in degrees.items()}
for j in range(1, m):
for i in range(1, r):
if (r*(m-j) - m*i >= delta):
#########
index = degrees_inv[(i-1, m-j)]
fct = superelliptic_function(self, Fxy(m*y^(m-j)/x^i))
constant = self.holomorphic_differentials_basis()[index].serre_duality_pairing(fct)
#######
s = Rx(m-j)*Rx(x)*Rx(f.derivative()) - Rx(m)*Rx(i)*f
psi = Rx(cut(s, i))
basis[index+genus] = 1/constant*superelliptic_cech(self, superelliptic_form(self, Fxy(psi/y^j)), superelliptic_function(self, Fxy(m*y^(m-j)/x^i)))
degrees0[t] = (psi.degree(), j)
degrees1[t] = (-i, m-j)
t += 1
return basis, degrees0, degrees1
def de_rham_basis(self):
basis, degrees0, degrees1 = self.basis_de_rham_degrees()
return basis
def degrees_de_rham0(self):
basis, degrees0, degrees1 = self.basis_de_rham_degrees()
return degrees0
def degrees_de_rham1(self):
basis, degrees0, degrees1 = self.basis_de_rham_degrees()
return degrees1
def is_smooth(self):
f = self.polynomial
if f.discriminant() == 0:
return 0
return 1
def genus(self):
r = self.polynomial.degree()
m = self.exponent
delta = GCD(r, m)
return 1/2*((r-1)*(m-1) - delta + 1)
def verschiebung_matrix(self):
basis = self.de_rham_basis()
g = self.genus()
p = self.characteristic
F = self.base_ring
M = matrix(F, 2*g, 2*g)
for i in range(0, len(basis)):
w = basis[i]
v = w.verschiebung().coordinates()
M[i, :] = v
return M
def dr_frobenius_matrix(self):
basis = self.de_rham_basis()
g = self.genus()
p = self.characteristic
F = self.base_ring
M = matrix(F, 2*g, 2*g)
for i in range(0, len(basis)):
w = basis[i]
v = w.frobenius().coordinates()
M[i, :] = v
return M
def cartier_matrix(self):
basis = self.holomorphic_differentials_basis()
g = self.genus()
p = self.characteristic
F = self.base_ring
M = matrix(F, g, g)
for i in range(0, len(basis)):
w = basis[i]
v = w.cartier().coordinates()
M[:, i] = vector(v)
return M
def frobenius_matrix(self, prec=20):
g = self.genus()
F = self.base_ring
p = F.characteristic()
M = matrix(F, g, g)
for i, f in enumerate(self.cohomology_of_structure_sheaf_basis()):
M[i, :] = vector((f^p).coordinates(prec=prec))
M = M.transpose()
return M
def p_rank(self):
if self.exponent != 2:
raise ValueError('No implemented yet.')
f = self.polynomial()
F = self.base_ring
Rt.<t> = PolynomialRing(F)
f = Rt(f)
H = HyperellipticCurve(f, 0)
return H.p_rank()
def a_number(self):
g = self.genus()
return g - self.cartier_matrix().rank()
def final_type(self, test = 0):
Fr = self.frobenius_matrix()
V = self.verschiebung_matrix()
p = self.characteristic
return flag(Fr, V, p, test)
def cohomology_of_structure_sheaf_basis(self):
'''Basis of cohomology of structure sheaf H1(X, OX).'''
m = self.exponent
f = self.polynomial
r = f.degree()
F = self.base_ring
delta = self.nb_of_pts_at_infty
g = self.genus()
Rx.<x> = PolynomialRing(F)
Rxy.<x, y> = PolynomialRing(F, 2)
Fxy = FractionField(Rxy)
basis = g*[0]
degrees = self.degrees_holomorphic_differentials()
degrees_inv = {b:a for a, b in degrees.items()}
for j in range(1, m):
for i in range(1, r):
if (r*(m-j) - m*i >= delta):
index = degrees_inv[(i-1, m-j)]
fct = superelliptic_function(self, Fxy(m*y^(m-j)/x^i))
constant = self.holomorphic_differentials_basis()[index].serre_duality_pairing(fct)
basis[index] = 1/constant*fct
return basis
def uniformizer(self):
m = self.exponent
r = self.polynomial.degree()
delta, a, b = xgcd(m, r)
a = -a
M = m/delta
R = r/delta
while a<0:
a += R
b += M
return (C.x)^a/(C.y)^b
def reduction(C, g):
'''Auxilliary. Given a superelliptic curve C : y^m = f(x) and a polynomial g(x, y)
it replaces repeteadly all y^m's in g(x, y) by f(x). As a result
you obtain sum_{i = 0}^{m-1} y^i g_i(x).'''
p = C.characteristic
F = C.base_ring
Rxy.<x, y> = PolynomialRing(F, 2)
Fxy = FractionField(Rxy)
f = C.polynomial
r = f.degree()
m = C.exponent
g = Fxy(g)
g1 = g.numerator()
g2 = g.denominator()
Rx.<x1> = PolynomialRing(F)
Fx = FractionField(Rx)
FxRy.<y1> = PolynomialRing(Fx)
(A, B, C) = xgcd(FxRy(g2(x=x1, y=y1)), y1^m - FxRy(f(x=x1)))
g = FxRy(FxRy(g1(x=x1, y=y1))*B/A)
while(g.degree(y1) >= m):
d = g.degree(y1)
G = coff(g, d)
i = floor(d/m)
g = g - G*y1^d + Rx(f(x=x1)^i) * y1^(d%m) *G
x, y = Fxy.gens()
h = Fxy(g(x1 = x, y1 = y))
return(h)
def reduction_form(C, g):
'''Auxilliary. Given a superelliptic curve C : y^m = f(x) and a polynomial g(x, y)
it replaces repeteadly all y^m's in g(x, y) by f(x). As a result
you obtain sum_{i = 0}^{m-1} g_i(x)/y^i. This is needed for reduction of
superelliptic forms.'''
F = C.base_ring
Rxy.<x, y> = PolynomialRing(F, 2)
Fxy = FractionField(Rxy)
f = C.polynomial
r = f.degree()
m = C.exponent
g = reduction(C, g)
Rx.<x1> = PolynomialRing(F)
Fx = FractionField(Rx)
FxRy.<y1> = PolynomialRing(Fx)
g1 = FxRy(0)
g = FxRy(g(x = x1, y=y1))
for j in range(0, m):
if j==0:
G = Fx(coff(g, 0))
g1 += FxRy(G)
else:
G = coff(g, j)
g1 += y1^(j-m)*FxRy(f(x=x1)*G)
g1 = Fxy(g1(x1 = x, y1 = y))
return(g1)