1
0
DeRhamComputation/superelliptic_drw/de_rham_witt_lift.sage

50 lines
2.2 KiB
Python

def de_rham_witt_lift_form0(omega):
C = omega.curve
omega_regular = omega.regular_form() #Present omega0 in the form P dx + Q dy
#Now the obvious lift of omega0 = P dx + Q dy to de Rham-Witt is [P] d[x] + [Q] d[y]
return omega_regular.dx.teichmuller()*(C.x.teichmuller().diffn()) + omega_regular.dy.teichmuller()*(C.y.teichmuller().diffn())
def de_rham_witt_lift_form8(omega):
C = omega.curve
g = C.genus()
omega_regular = second_patch(omega).regular_form()
omega_regular = (second_patch(omega_regular.dx), second_patch(omega_regular.dy))
u = (C.x)^(-1)
v = (C.y)/(C.x)^(g+1)
omega_lift = omega_regular[0].teichmuller()*(u.teichmuller().diffn()) + omega_regular[1].teichmuller()*(v.teichmuller().diffn())
return omega_lift
def de_rham_witt_lift(cech_class, prec = 50):
C = cech_class.curve
g = C.genus()
omega0 = cech_class.omega0
omega8 = cech_class.omega8
fct = cech_class.f
omega0_lift = de_rham_witt_lift_form0(omega0)
omega8_lift = de_rham_witt_lift_form8(omega8)
aux = omega0_lift - omega8_lift - fct.teichmuller().diffn() # now aux is of the form (V(smth) + dV(smth), V(smth))
if aux.h1.function != 0:
raise ValueError('Something went wrong - aux is not of the form (V(smth) + dV(smth), V(smth)).')
decom_aux_h2 = decomposition_g0_g8(aux.h2, prec=prec) #decompose dV(smth) in aux as smth regular on U0 - smth regular on U8.
aux_h2 = decom_aux_h2[0]
aux_f = decom_aux_h2[2]
aux_omega0 = decomposition_omega0_omega8(aux.omega, prec=prec)[0]
result = superelliptic_drw_cech(omega0_lift - aux_omega0.verschiebung(), fct.teichmuller() + aux_h2.verschiebung() + aux_f.verschiebung())
return result
def crystalline_cohomology_basis(self, prec = 50, info = 0):
result = []
prec1 = prec
for i, a in enumerate(self.de_rham_basis()):
if info:
print("Computing " + str(i) +". basis element")
while True:
try:
result += [de_rham_witt_lift(a, prec = prec1)]
break
except IndexError:
prec1 += 100
result += [de_rham_witt_lift(a, prec = prec1)]
return result
superelliptic.crystalline_cohomology_basis = crystalline_cohomology_basis