158 lines
5.2 KiB
Python
158 lines
5.2 KiB
Python
class superelliptic_function:
|
|
'''Class of rational functions on a superelliptic curve C. g = g(x, y) is a polynomial
|
|
defining the function.'''
|
|
def __init__(self, C, g):
|
|
F = C.base_ring
|
|
Rxy.<x, y> = PolynomialRing(F, 2)
|
|
Fxy = FractionField(Rxy)
|
|
f = C.polynomial
|
|
r = f.degree()
|
|
m = C.exponent
|
|
|
|
self.curve = C
|
|
g = reduction(C, g)
|
|
self.function = g
|
|
|
|
def __eq__(self, other):
|
|
if self.function == other.function:
|
|
return True
|
|
return False
|
|
|
|
def __repr__(self):
|
|
return str(self.function)
|
|
|
|
def jth_component(self, j):
|
|
g = self.function
|
|
C = self.curve
|
|
F = C.base_ring
|
|
Rx.<x> = PolynomialRing(F)
|
|
Fx.<x> = FractionField(Rx)
|
|
FxRy.<y> = PolynomialRing(Fx)
|
|
g = FxRy(g)
|
|
return coff(g, j)
|
|
|
|
def __add__(self, other):
|
|
C = self.curve
|
|
g1 = self.function
|
|
g2 = other.function
|
|
g = reduction(C, g1 + g2)
|
|
return superelliptic_function(C, g)
|
|
|
|
def __neg__(self):
|
|
C = self.curve
|
|
g = self.function
|
|
return superelliptic_function(C, -g)
|
|
|
|
def __sub__(self, other):
|
|
C = self.curve
|
|
g1 = self.function
|
|
g2 = other.function
|
|
g = reduction(C, g1 - g2)
|
|
return superelliptic_function(C, g)
|
|
|
|
def __mul__(self, other):
|
|
C = self.curve
|
|
F = C.base_ring
|
|
if isinstance(other, superelliptic_function):
|
|
g1 = self.function
|
|
g2 = other.function
|
|
g = reduction(C, g1 * g2)
|
|
return superelliptic_function(C, g)
|
|
if isinstance(other, superelliptic_form):
|
|
g1 = self.function
|
|
g2 = other.form
|
|
g = reduction(C, g1 * g2)
|
|
return superelliptic_form(C, g)
|
|
|
|
def __rmul__(self, constant):
|
|
C = self.curve
|
|
g = self.function
|
|
return superelliptic_function(C, constant*g)
|
|
|
|
def __truediv__(self, other):
|
|
C = self.curve
|
|
g1 = self.function
|
|
g2 = other.function
|
|
g = reduction(C, g1 / g2)
|
|
return superelliptic_function(C, g)
|
|
|
|
def __pow__(self, exp):
|
|
C = self.curve
|
|
g = self.function
|
|
return superelliptic_function(C, g^(exp))
|
|
|
|
def diffn(self):
|
|
C = self.curve
|
|
f = C.polynomial
|
|
m = C.exponent
|
|
F = C.base_ring
|
|
g = self.function
|
|
Rxy.<x, y> = PolynomialRing(F, 2)
|
|
Fxy = FractionField(Rxy)
|
|
g = Fxy(g)
|
|
A = g.derivative(x)
|
|
B = g.derivative(y)*f.derivative(x)/(m*y^(m-1))
|
|
return superelliptic_form(C, A+B)
|
|
|
|
def coordinates(self, basis = 0, prec=50):
|
|
'''Find coordinates in H1(X, OX) in given basis dual to basis *basis*.'''
|
|
C = self.curve
|
|
if basis == 0:
|
|
basis = C.holomorphic_differentials_basis()
|
|
g = C.genus()
|
|
coordinates = g*[0]
|
|
for i, omega in enumerate(basis):
|
|
coordinates[i] = omega.serre_duality_pairing(self, prec=prec)
|
|
return coordinates
|
|
|
|
def expansion_at_infty(self, place = 0, prec=20):
|
|
C = self.curve
|
|
fct = self.function
|
|
F = C.base_ring
|
|
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
|
xx = C.x_series[place]
|
|
yy = C.y_series[place]
|
|
return Rt(fct(x = Rt(xx), y = Rt(yy)))
|
|
|
|
def expansion(self, pt, prec = 50):
|
|
'''Expansion in the completed ring of the point pt. If pt is an integer, it means the corresponding place at infinity.'''
|
|
if pt in ZZ:
|
|
return self.expansion_at_infty(place=pt, prec=prec)
|
|
x0, y0 = pt[0], pt[1]
|
|
C = self.curve
|
|
f = C.polynomial
|
|
F = C.base_ring
|
|
m = C.exponent
|
|
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
|
Rxy.<x, y> = PolynomialRing(F, 2)
|
|
Fxy = FractionField(Rxy)
|
|
if y0 !=0 and f.derivative()(x0) != 0:
|
|
y_series = f(x = t + x0).nth_root(m)
|
|
return Rt(self.function(x = t + x0, y = y_series))
|
|
if f.derivative()(x0) == 0: # then x - x0 is a uniformizer
|
|
y_series = Rt(f(x = t+x0).nth_root(m))
|
|
return Rt(self.function(x = t + x0, y = y_series))
|
|
if y0 == 0: #then y is a uniformizer
|
|
f1 = f(x = x+x0) - y0
|
|
x_series = new_reverse(f1(x = t), prec = prec)
|
|
x_series = x_series(t = t^m - y0) + x0
|
|
return self.function(x = x_series, y = t)
|
|
|
|
def pth_root(self):
|
|
'''Compute p-th root of given function. This uses the following fact: if h = H^p, then C(h*dx/x) = H*dx/x.'''
|
|
C = self.curve
|
|
if self.diffn().form != 0:
|
|
raise ValueError("Function is not a p-th power.")
|
|
Fxy, Rxy, x, y = C.fct_field
|
|
auxilliary_form = superelliptic_form(C, self.function/x)
|
|
auxilliary_form = auxilliary_form.cartier()
|
|
auxilliary_form = C.x * auxilliary_form
|
|
auxilliary_form = auxilliary_form.form
|
|
return superelliptic_function(C, auxilliary_form)
|
|
|
|
def valuation(self, place = 0):
|
|
'''Return valuation at i-th place at infinity.'''
|
|
C = self.curve
|
|
F = C.base_ring
|
|
Rt.<t> = LaurentSeriesRing(F)
|
|
return Rt(self.expansion_at_infty(place = place)).valuation() |