92 lines
2.6 KiB
Python
92 lines
2.6 KiB
Python
class superelliptic_cohomology:
|
|
'''Cohomology of structure sheaf.'''
|
|
def __init__(self, C, f):
|
|
self.curve = C
|
|
self.function = f
|
|
|
|
def prod(self, form, prec=20):
|
|
result = 0
|
|
C = self.curve
|
|
delta = C.nb_of_pts_at_infty
|
|
fct = superelliptic_function(C, self.function)
|
|
for i in range(delta):
|
|
result += (fct*form).expansion_at_infty(place=i, prec=prec)[-1]
|
|
return -result
|
|
|
|
def __repr__(self):
|
|
return "[" + str(self.function) + "]"
|
|
|
|
def __add__(self, other):
|
|
C = self.curve
|
|
g1 = self.function
|
|
g2 = other.function
|
|
g = reduction(C, g1 + g2)
|
|
return superelliptic_cohomology(C, g)
|
|
|
|
def __sub__(self, other):
|
|
C = self.curve
|
|
g1 = self.function
|
|
g2 = other.function
|
|
g = reduction(C, g1 - g2)
|
|
return superelliptic_cohomology(C, g)
|
|
|
|
def __rmul__(self, constant):
|
|
C = self.curve
|
|
g = self.function
|
|
return superelliptic_cohomology(C, constant*g)
|
|
|
|
def coordinates(self, basis = 0, basis_holo = 0, prec=20):
|
|
C = self.curve
|
|
if basis == 0:
|
|
basis = basis_of_cohomology(C)
|
|
if basis_holo == 0:
|
|
basis_holo = C.holomorphic_differentials_basis()
|
|
g = C.genus()
|
|
coordinates = g*[0]
|
|
for i, omega in enumerate(basis_holo):
|
|
coordinates[i] = self.prod(omega, prec=prec)
|
|
return coordinates
|
|
|
|
def frobenius(self):
|
|
C = self.curve
|
|
f = self.function
|
|
p = C.base_ring.characteristic()
|
|
return superelliptic_cohomology(C, f^p)
|
|
|
|
def basis_of_cohomology(C):
|
|
m = C.exponent
|
|
f = C.polynomial
|
|
r = f.degree()
|
|
F = C.base_ring
|
|
delta = C.nb_of_pts_at_infty
|
|
Rx.<x> = PolynomialRing(F)
|
|
Rxy.<x, y> = PolynomialRing(F, 2)
|
|
Fxy = FractionField(Rxy)
|
|
basis = []
|
|
for j in range(1, m):
|
|
for i in range(1, r):
|
|
if (r*j - m*i >= delta):
|
|
basis += [superelliptic_cohomology(C, Fxy(m*y^(j)/x^i))]
|
|
return basis
|
|
|
|
def frobenius_matrix(C, prec=20):
|
|
g = C.genus()
|
|
F = C.base_ring
|
|
M = matrix(F, g, g)
|
|
for i, f in enumerate(basis_of_cohomology(C)):
|
|
M[i, :] = vector(f.frobenius().coordinates(prec=prec))
|
|
return M
|
|
|
|
|
|
def frobenius_kernel(C, prec=20):
|
|
M = frobenius_matrix(C, prec=prec)
|
|
K = M.kernel().basis()
|
|
g = C.genus()
|
|
result = []
|
|
basis = basis_of_cohomology(C)
|
|
for v in K:
|
|
coh = superelliptic_cohomology(C, 0)
|
|
for i in range(g):
|
|
coh += v[i] * basis[i]
|
|
result += [coh]
|
|
return result |