DeRhamComputation/drafty/superelliptic_cohomology_class.sage

92 lines
2.6 KiB
Python

class superelliptic_cohomology:
'''Cohomology of structure sheaf.'''
def __init__(self, C, f):
self.curve = C
self.function = f
def prod(self, form, prec=20):
result = 0
C = self.curve
delta = C.nb_of_pts_at_infty
fct = superelliptic_function(C, self.function)
for i in range(delta):
result += (fct*form).expansion_at_infty(place=i, prec=prec)[-1]
return -result
def __repr__(self):
return "[" + str(self.function) + "]"
def __add__(self, other):
C = self.curve
g1 = self.function
g2 = other.function
g = reduction(C, g1 + g2)
return superelliptic_cohomology(C, g)
def __sub__(self, other):
C = self.curve
g1 = self.function
g2 = other.function
g = reduction(C, g1 - g2)
return superelliptic_cohomology(C, g)
def __rmul__(self, constant):
C = self.curve
g = self.function
return superelliptic_cohomology(C, constant*g)
def coordinates(self, basis = 0, basis_holo = 0, prec=20):
C = self.curve
if basis == 0:
basis = basis_of_cohomology(C)
if basis_holo == 0:
basis_holo = C.holomorphic_differentials_basis()
g = C.genus()
coordinates = g*[0]
for i, omega in enumerate(basis_holo):
coordinates[i] = self.prod(omega, prec=prec)
return coordinates
def frobenius(self):
C = self.curve
f = self.function
p = C.base_ring.characteristic()
return superelliptic_cohomology(C, f^p)
def basis_of_cohomology(C):
m = C.exponent
f = C.polynomial
r = f.degree()
F = C.base_ring
delta = C.nb_of_pts_at_infty
Rx.<x> = PolynomialRing(F)
Rxy.<x, y> = PolynomialRing(F, 2)
Fxy = FractionField(Rxy)
basis = []
for j in range(1, m):
for i in range(1, r):
if (r*j - m*i >= delta):
basis += [superelliptic_cohomology(C, Fxy(m*y^(j)/x^i))]
return basis
def frobenius_matrix(C, prec=20):
g = C.genus()
F = C.base_ring
M = matrix(F, g, g)
for i, f in enumerate(basis_of_cohomology(C)):
M[i, :] = vector(f.frobenius().coordinates(prec=prec))
return M
def frobenius_kernel(C, prec=20):
M = frobenius_matrix(C, prec=prec)
K = M.kernel().basis()
g = C.genus()
result = []
basis = basis_of_cohomology(C)
for v in K:
coh = superelliptic_cohomology(C, 0)
for i in range(g):
coh += v[i] * basis[i]
result += [coh]
return result