DeRhamComputation/superelliptic/superelliptic_function_class.sage
2024-01-09 09:48:05 +00:00

160 lines
5.4 KiB
Python

class superelliptic_function:
'''Class of rational functions on a superelliptic curve C. g = g(x, y) is a polynomial
defining the function.'''
def __init__(self, C, g):
F = C.base_ring
Rxy.<x, y> = PolynomialRing(F, 2)
Fxy = FractionField(Rxy)
f = C.polynomial
r = f.degree()
m = C.exponent
self.curve = C
g = reduction(C, g)
self.function = g
def __eq__(self, other):
if self.function == other.function:
return True
return False
def __repr__(self):
return str(self.function)
def jth_component(self, j):
g = self.function
C = self.curve
F = C.base_ring
Rx.<x> = PolynomialRing(F)
Fx.<x> = FractionField(Rx)
FxRy.<y> = PolynomialRing(Fx)
g = FxRy(g)
return coff(g, j)
def __add__(self, other):
C = self.curve
g1 = self.function
g2 = other.function
g = reduction(C, g1 + g2)
return superelliptic_function(C, g)
def __neg__(self):
C = self.curve
g = self.function
return superelliptic_function(C, -g)
def __sub__(self, other):
C = self.curve
g1 = self.function
g2 = other.function
g = reduction(C, g1 - g2)
return superelliptic_function(C, g)
def __mul__(self, other):
C = self.curve
F = C.base_ring
if isinstance(other, superelliptic_function):
g1 = self.function
g2 = other.function
g = reduction(C, g1 * g2)
return superelliptic_function(C, g)
if isinstance(other, superelliptic_form):
g1 = self.function
g2 = other.form
g = reduction(C, g1 * g2)
return superelliptic_form(C, g)
def __rmul__(self, constant):
C = self.curve
g = self.function
return superelliptic_function(C, constant*g)
def __truediv__(self, other):
C = self.curve
g1 = self.function
g2 = other.function
g = reduction(C, g1 / g2)
return superelliptic_function(C, g)
def __pow__(self, exp):
C = self.curve
g = self.function
return superelliptic_function(C, g^(exp))
def diffn(self):
C = self.curve
f = C.polynomial
m = C.exponent
F = C.base_ring
g = self.function
Rxy.<x, y> = PolynomialRing(F, 2)
Fxy = FractionField(Rxy)
g = Fxy(g)
A = g.derivative(x)
B = g.derivative(y)*f.derivative(x)/(m*y^(m-1))
return superelliptic_form(C, A+B)
def coordinates(self, basis = 0, basis_holo = 0, prec=50):
'''Find coordinates in H1(X, OX) in given basis basis with dual basis basis_holo.'''
C = self.curve
if basis == 0:
basis = C.cohomology_of_structure_sheaf_basis()
if basis_holo == 0:
basis_holo = C.holomorphic_differentials_basis()
g = C.genus()
coordinates = g*[0]
for i, omega in enumerate(basis_holo):
coordinates[i] = -omega.serre_duality_pairing(self, prec=prec)
return coordinates
def expansion_at_infty(self, place = 0, prec=20):
C = self.curve
fct = self.function
F = C.base_ring
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
xx = C.x_series[place]
yy = C.y_series[place]
return Rt(fct(x = Rt(xx), y = Rt(yy)))
def expansion(self, pt, prec = 50):
'''Expansion in the completed ring of the point pt. If pt is an integer, it means the corresponding place at infinity.'''
if pt in ZZ:
return self.expansion_at_infty(place=pt, prec=prec)
x0, y0 = pt[0], pt[1]
C = self.curve
f = C.polynomial
F = C.base_ring
m = C.exponent
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
Rxy.<x, y> = PolynomialRing(F, 2)
Fxy = FractionField(Rxy)
if y0 !=0 and f.derivative()(x0) != 0:
y_series = f(x = t + x0).nth_root(m)
return Rt(self.function(x = t + x0, y = y_series))
if f.derivative()(x0) == 0: # then x - x0 is a uniformizer
y_series = Rt(f(x = t+x0).nth_root(m))
return Rt(self.function(x = t + x0, y = y_series))
if y0 == 0: #then y is a uniformizer
f1 = f(x = x+x0) - y0
x_series = new_reverse(f1(x = t), prec = prec)
x_series = x_series(t = t^m - y0) + x0
return self.function(x = x_series, y = t)
def pth_root(self):
'''Compute p-th root of given function. This uses the following fact: if h = H^p, then C(h*dx/x) = H*dx/x.'''
C = self.curve
if self.diffn().form != 0:
raise ValueError("Function is not a p-th power.")
Fxy, Rxy, x, y = C.fct_field
auxilliary_form = superelliptic_form(C, self.function/x)
auxilliary_form = auxilliary_form.cartier()
auxilliary_form = C.x * auxilliary_form
auxilliary_form = auxilliary_form.form
return superelliptic_function(C, auxilliary_form)
def valuation(self, place = 0):
'''Return valuation at i-th place at infinity.'''
C = self.curve
F = C.base_ring
Rt.<t> = LaurentSeriesRing(F)
return Rt(self.expansion_at_infty(place = place)).valuation()