sketch of pf for Zpn
This commit is contained in:
parent
2446de0dd4
commit
00c319f4c0
@ -1,3 +1,4 @@
|
||||
\BOOKMARK [1][-]{section.1}{\376\377\0001\000.\000\040}{}% 1
|
||||
\BOOKMARK [1][-]{section.1}{\376\377\0001\000.\000\040\000I\000n\000t\000r\000o\000d\000u\000c\000t\000i\000o\000n}{}% 1
|
||||
\BOOKMARK [1][-]{section.2}{\376\377\0002\000.\000\040\000C\000y\000c\000l\000i\000c\000\040\000c\000o\000v\000e\000r\000s}{}% 2
|
||||
\BOOKMARK [1][-]{section*.1}{\376\377\000R\000e\000f\000e\000r\000e\000n\000c\000e\000s}{}% 3
|
||||
\BOOKMARK [1][-]{section.3}{\376\377\0003\000.\000\040\000H\000y\000p\000o\000e\000l\000e\000m\000e\000n\000t\000a\000r\000y\000\040\000c\000o\000v\000e\000r\000s}{}% 3
|
||||
\BOOKMARK [1][-]{section*.1}{\376\377\000R\000e\000f\000e\000r\000e\000n\000c\000e\000s}{}% 4
|
||||
|
Binary file not shown.
@ -112,7 +112,7 @@ hyperref, bbm, mathtools, mathrsfs}
|
||||
%opening
|
||||
\begin{document}
|
||||
|
||||
\title[The de Rham...]{?? The de Rham cohomology of covers with cyclic $p$-Sylow subgroup}
|
||||
\title[The de Rham...]{?? The de Rham cohomology of covers\\ with cyclic $p$-Sylow subgroup}
|
||||
\author[A. Kontogeorgis and J. Garnek]{Aristides Kontogeorgis and J\k{e}drzej Garnek}
|
||||
\address{???}
|
||||
\email{jgarnek@amu.edu.pl}
|
||||
@ -129,8 +129,15 @@ hyperref, bbm, mathtools, mathrsfs}
|
||||
\maketitle
|
||||
\bibliographystyle{plain}
|
||||
%
|
||||
\section{}
|
||||
\section{Introduction}
|
||||
%
|
||||
\begin{mainthm}
|
||||
Suppose that $G$ is a group with a $p$-cyclic Sylow subgroup.
|
||||
Let $X$ be a curve with an action of~$G$ over a field $k$ of characteristic $p$.
|
||||
The $k[G]$-module structure of $H^1_{dR}(X)$ is uniquely determined by the lower ramification groups and the fundamental characters of closed
|
||||
points $x$ of $X$ that are ramified in the cover $X \to X/G$.
|
||||
\end{mainthm}
|
||||
|
||||
\section{Cyclic covers}
|
||||
%
|
||||
Let for any $\ZZ/p^n$-cover $X \to Y$
|
||||
@ -206,7 +213,17 @@ Note also that for $j \ge 1$:
|
||||
????
|
||||
\end{proof}
|
||||
%
|
||||
|
||||
\begin{Lemma}
|
||||
For any $i \le p^n - 1$:
|
||||
%
|
||||
\[
|
||||
(\sigma - 1) : T^{i+1} M \hookrightarrow T^i M.
|
||||
\]
|
||||
\end{Lemma}
|
||||
\begin{proof}
|
||||
|
||||
\end{proof}
|
||||
%
|
||||
\begin{proof}[Proof of Theorem ????]
|
||||
We use the following notation: $H' := \langle \sigma^p \rangle \cong \ZZ/p^{n-1}$,
|
||||
$H'' := H/\langle \sigma^{p^{n-1}} \rangle \cong \ZZ/p^{n-1}$, $Y' := X/H'$, $X'' := X/H''$.
|
||||
@ -224,7 +241,7 @@ Note also that for $j \ge 1$:
|
||||
m' :=
|
||||
\begin{cases}
|
||||
n-1, & \textrm{ if } m = n,\\
|
||||
n, & \textrm{ otherwise.}
|
||||
m, & \textrm{ otherwise.}
|
||||
\end{cases}
|
||||
\]
|
||||
|
||||
@ -236,7 +253,50 @@ Note also that for $j \ge 1$:
|
||||
???,
|
||||
\end{cases}
|
||||
\end{align*}
|
||||
%
|
||||
In particular, $\dim_k \mc T^1 M = \ldots = \dim_k \mc T^{p^{n-1} - p^{n-2}} M$.
|
||||
On the other hand, by Lemma ??:
|
||||
%
|
||||
\begin{align*}
|
||||
\dim_k \mc T^1 M &= \dim_k T^1 M + \ldots + \dim_k T^p M\\
|
||||
&\ge \dim_k T^{p^n - p^{n-1}} M + \ldots + \dim_k T^{p^n - p^{n-1}} M
|
||||
= \dim_k \mc T^{p^{n-1} - p^{n-2}} M.
|
||||
\end{align*}
|
||||
%
|
||||
Since the left-hand side and right hand side are equal, we conclude by Lemma ???
|
||||
that
|
||||
%
|
||||
\[
|
||||
\dim_k T^1 M = \ldots = \dim_k T^{p^n - p^{n-1}} M = \frac{1}{p} \dim_k \mc T^1 M.
|
||||
\]
|
||||
%
|
||||
If the cover $X \to X''$ is \'{e}tale, then the cover $X \to Y$ must be also \'{e}tale.
|
||||
Thus the proof follows in this case by~\cite{Nakajima??Inventiones}. Suppose now that
|
||||
$X \to X''$ is not \'{e}tale. Then, by Lemma ???, the map $\tr_{X/X''} : H^1_{dR}(X) \to H^1_{dR}(X'')$ is surjective. Moreover, note that in the group ring $k[H]$ we have:
|
||||
%
|
||||
\[
|
||||
\tr_{X/X''} = \sum_{j = 0}^{p-1} (\sigma^{p^{n-1}})^j = (\sigma^{p^{n-1}} - 1)^{p-1} =
|
||||
(\sigma - 1)^{p^n - p^{n-1}}.
|
||||
\]
|
||||
%
|
||||
This implies that:
|
||||
%
|
||||
\[
|
||||
\ker(\tr_{X/X''} : M \to M'') = M^{(p^n - p^{n-1})}
|
||||
\]
|
||||
%
|
||||
and that $\tr_{X/X''}$ induces a $k$-linear isomorphism $T^{i + p^n - p^{n-1}} M \to \mc T^i M''$ for any $i \ge 1$. Thus:
|
||||
%
|
||||
\[
|
||||
\dim_k T^{i + p^n - p^{n-1}} M = \dim_k \mc T^i M'' = ....
|
||||
\]
|
||||
%
|
||||
This ends the proof.
|
||||
\end{proof}
|
||||
|
||||
\section{Hypoelementary covers}
|
||||
%
|
||||
Assume now that $G = H \rtimes_{\chi} \ZZ/??n$.
|
||||
|
||||
\bibliography{bibliografia}
|
||||
\end{document}
|
Loading…
Reference in New Issue
Block a user