references for Chevalley Weil; H1 and H2 of G for elementary

This commit is contained in:
jgarnek 2024-12-06 13:01:13 +01:00
parent 356ac56be0
commit 09ff63cfc6
3 changed files with 165 additions and 131 deletions

View File

@ -1,12 +1,16 @@
\def\cprime{$'$}
\begin{thebibliography}{10} \begin{thebibliography}{10}
\bibitem{MR2035696}
Alejandro Adem and R.~James Milgram.
\newblock {\em Cohomology of finite groups}, volume 309 of {\em Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]}.
\newblock Springer-Verlag, Berlin, second edition, 2004.
\bibitem{Alperin_local_rep} \bibitem{Alperin_local_rep}
J.~L. Alperin. J.~L. Alperin.
\newblock {\em Local representation theory}, volume~11 of {\em Cambridge \newblock {\em Local representation theory}, volume~11 of {\em Cambridge Studies in Advanced Mathematics}.
Studies in Advanced Mathematics}.
\newblock Cambridge University Press, Cambridge, 1986. \newblock Cambridge University Press, Cambridge, 1986.
\newblock Modular representations as an introduction to the local \newblock Modular representations as an introduction to the local representation theory of finite groups.
representation theory of finite groups.
\bibitem{Bleher_Camacho_Holomorphic_differentials} \bibitem{Bleher_Camacho_Holomorphic_differentials}
F.~M. Bleher and N.~Camacho. F.~M. Bleher and N.~Camacho.
@ -20,29 +24,30 @@ F.~M. Bleher, T.~Chinburg, and A.~Kontogeorgis.
\bibitem{Borevic_Faddeev} \bibitem{Borevic_Faddeev}
Z.~I. {Borevi\v{c}} and D.~K. Faddeev. Z.~I. {Borevi\v{c}} and D.~K. Faddeev.
\newblock Theory of homology in groups. {II}. {P}rojective resolutions of \newblock Theory of homology in groups. {II}. {P}rojective resolutions of finite groups.
finite groups.
\newblock {\em Vestnik Leningrad. Univ.}, 14(7):72--87, 1959. \newblock {\em Vestnik Leningrad. Univ.}, 14(7):72--87, 1959.
\bibitem{Chevalley_Weil_Uber_verhalten} \bibitem{Chevalley_Weil_Uber_verhalten}
C.~Chevalley, A.~Weil, and E.~Hecke. C.~Chevalley, A.~Weil, and E.~Hecke.
\newblock \"{U}ber das verhalten der integrale 1. gattung bei automorphismen \newblock \"{U}ber das verhalten der integrale 1. gattung bei automorphismen des funktionenk\"{o}rpers.
des funktionenk\"{o}rpers.
\newblock {\em Abh. Math. Sem. Univ. Hamburg}, 10(1):358--361, 1934. \newblock {\em Abh. Math. Sem. Univ. Hamburg}, 10(1):358--361, 1934.
\bibitem{Curtis_Reiner_Methods_II} \bibitem{Curtis_Reiner_Methods_II}
C.~W. Curtis and I.~Reiner. C.~W. Curtis and I.~Reiner.
\newblock {\em Methods of representation theory. {V}ol. {II}}. \newblock {\em Methods of representation theory. {V}ol. {II}}.
\newblock Pure and Applied Mathematics (New York). John Wiley \& Sons, Inc., \newblock Pure and Applied Mathematics (New York). John Wiley \& Sons, Inc., New York, 1987.
New York, 1987. \newblock With applications to finite groups and orders, A Wiley-Interscience Publication.
\newblock With applications to finite groups and orders, A Wiley-Interscience
Publication.
\bibitem{Dummigan_99} \bibitem{Dummigan_99}
N.~Dummigan. N.~Dummigan.
\newblock Complete {$p$}-descent for {J}acobians of {H}ermitian curves. \newblock Complete {$p$}-descent for {J}acobians of {H}ermitian curves.
\newblock {\em Compositio Math.}, 119(2):111--132, 1999. \newblock {\em Compositio Math.}, 119(2):111--132, 1999.
\bibitem{Ellingsrud_Lonsted_Equivariant_Lefschetz}
G.~Ellingsrud and K.~L\o~nsted.
\newblock An equivariant {L}efschetz formula for finite reductive groups.
\newblock {\em Math. Ann.}, 251(3):253--261, 1980.
\bibitem{Garnek_equivariant} \bibitem{Garnek_equivariant}
J.~Garnek. J.~Garnek.
\newblock Equivariant splitting of the {H}odge-de {R}ham exact sequence. \newblock Equivariant splitting of the {H}odge-de {R}ham exact sequence.
@ -95,8 +100,7 @@ G.~Lusztig.
\bibitem{WardMarques_HoloDiffs} \bibitem{WardMarques_HoloDiffs}
S.~Marques and K.~Ward. S.~Marques and K.~Ward.
\newblock Holomorphic differentials of certain solvable covers of the \newblock Holomorphic differentials of certain solvable covers of the projective line over a perfect field.
projective line over a perfect field.
\newblock {\em Math. Nachr.}, 291(13):2057--2083, 2018. \newblock {\em Math. Nachr.}, 291(13):2057--2083, 2018.
\bibitem{Prest} \bibitem{Prest}
@ -106,8 +110,7 @@ M.~Prest.
\bibitem{Serre1979} \bibitem{Serre1979}
J.-P. Serre. J.-P. Serre.
\newblock {\em {Local fields}}, volume~67 of {\em {Graduate Texts in \newblock {\em {Local fields}}, volume~67 of {\em {Graduate Texts in Mathematics}}.
Mathematics}}.
\newblock Springer-Verlag, New York-Berlin, 1979. \newblock Springer-Verlag, New York-Berlin, 1979.
\newblock Translated from the French by Marvin Jay Greenberg. \newblock Translated from the French by Marvin Jay Greenberg.
@ -122,4 +125,9 @@ R.~C. Valentini and M.~L. Madan.
\newblock Automorphisms and holomorphic differentials in characteristic~{$p$}. \newblock Automorphisms and holomorphic differentials in characteristic~{$p$}.
\newblock {\em J. Number Theory}, 13(1):106--115, 1981. \newblock {\em J. Number Theory}, 13(1):106--115, 1981.
\bibitem{Weibel}
Ch.~A. Weibel.
\newblock {\em An introduction to homological algebra}, volume~38 of {\em Cambridge Studies in Advanced Mathematics}.
\newblock Cambridge University Press, Cambridge, 1994.
\end{thebibliography} \end{thebibliography}

Binary file not shown.

View File

@ -132,14 +132,21 @@ hyperref, bbm, mathtools, mathrsfs}
% %
\section{Introduction} \section{Introduction}
% %
The classical Chevalley--Weil formula (cf. \cite{Chevalley_Weil_Uber_verhalten}) gives an explicit description The classical Chevalley--Weil formula
(cf. \cite{Chevalley_Weil_Uber_verhalten},
{\color{red}
\cite{Ellingsrud_Lonsted_Equivariant_Lefschetz})
}
gives an explicit description
of the equivariant structure of the cohomology of a curve $X$ with a group action over a field of characteristic~$0$. Their formula depends on the so-called \emph{fundamental characters} of points $x \in X$ that are ramified in the cover $X \to X/G$. ???? of the equivariant structure of the cohomology of a curve $X$ with a group action over a field of characteristic~$0$. Their formula depends on the so-called \emph{fundamental characters} of points $x \in X$ that are ramified in the cover $X \to X/G$. ????
It is hard to expect such a formula over fields of characteristic~$p$. It is hard to expect such a formula over fields of characteristic~$p$.
Indeed, if $G$ is a finite group with a non-cyclic $p$-Sylow subgroup, the set of indecomposable $k[G]$-modules is infinite. If, moreover, $p > 2$ then the indecomposable $k[G]$-modules are considered impossible to classify (cf. \cite{Prest}). There are many results concerning equivariant structure of cohomologies for particular groups Indeed, if $G$ is a finite group with a non-cyclic $p$-Sylow subgroup, the set of indecomposable $k[G]$-modules is infinite. If, moreover, $p > 2$ then the indecomposable $k[G]$-modules are considered impossible to classify (cf. \cite{Prest}). There are many results concerning equivariant structure of cohomologies for particular groups
(see e.g.~\cite{Valentini_Madan_Automorphisms} for the case of cyclic groups, \cite{WardMarques_HoloDiffs} for abelian groups, \cite{Bleher_Chinburg_Kontogeorgis_Galois_structure} for groups with a cyclic Sylow subgroup, or \cite{Bleher_Camacho_Holomorphic_differentials} for the Klein group) or curves (cf. \cite{Lusztig_Coxeter_orbits}, \cite{Dummigan_99}, \cite{Gross_Rigid_local_systems_Gm}, \cite{laurent_kock_drinfeld}). Also, one may expect that that (at least in the case of $p$-groups) determining cohomologies comes down to Harbater--Katz--Gabber covers (cf. \cite{Garnek_p_gp_covers}, \cite{Garnek_p_gp_covers_ii}). However, there is no hope of obtaining a result similar to the one of Chevalley and Weil.\\ (see e.g.~\cite{Valentini_Madan_Automorphisms} for the case of cyclic groups, \cite{WardMarques_HoloDiffs} for abelian groups, \cite{Bleher_Chinburg_Kontogeorgis_Galois_structure} for groups with a cyclic Sylow subgroup, or \cite{Bleher_Camacho_Holomorphic_differentials} for the Klein group) or curves (cf. \cite{Lusztig_Coxeter_orbits}, \cite{Dummigan_99}, \cite{Gross_Rigid_local_systems_Gm}, \cite{laurent_kock_drinfeld}). Also, one may expect that that (at least in the case of $p$-groups) determining cohomologies comes down to Harbater--Katz--Gabber covers (cf. \cite{Garnek_p_gp_covers}, \cite{Garnek_p_gp_covers_ii}). However, there is no hope of obtaining a result similar to the one of Chevalley and Weil.\\
This brings attention to groups with cyclic $p$-Sylow subgroup. For those, the set of indecomposable modules is finite (cf. \cite{Higman}, \cite{Borevic_Faddeev}, \cite{Heller_Reiner_Reps_in_integers_I}). While their representation theory still This brings attention to groups with cyclic $p$-Sylow subgroup. For those, the set of
{\color{red} equivalence classes of }
indecomposable modules is finite (cf. \cite{Higman}, \cite{Borevic_Faddeev}, \cite{Heller_Reiner_Reps_in_integers_I}). While their representation theory still
seems a bit too complicated to derive a general formula for the cohomologies, seems a bit too complicated to derive a general formula for the cohomologies,
the article~\cite{Bleher_Chinburg_Kontogeorgis_Galois_structure} proved that the article~\cite{Bleher_Chinburg_Kontogeorgis_Galois_structure} proved that
the $k[G]$-module structure of $H^0(X, \Omega_X)$ is determined by the higher ramification data (i.e. higher ramification groups and the fundamental characters of the ramification locus). The main result of this article is a similar statement for the de Rham cohomology. the $k[G]$-module structure of $H^0(X, \Omega_X)$ is determined by the higher ramification data (i.e. higher ramification groups and the fundamental characters of the ramification locus). The main result of this article is a similar statement for the de Rham cohomology.
@ -148,7 +155,7 @@ the $k[G]$-module structure of $H^0(X, \Omega_X)$ is determined by the higher ra
Suppose that $G$ is a group with a $p$-cyclic Sylow subgroup. Suppose that $G$ is a group with a $p$-cyclic Sylow subgroup.
Let $X$ be a curve with an action of~$G$ over a field $k$ of characteristic $p$. Let $X$ be a curve with an action of~$G$ over a field $k$ of characteristic $p$.
The $k[G]$-module structure of $H^1_{dR}(X)$ is uniquely determined by the The $k[G]$-module structure of $H^1_{dR}(X)$ is uniquely determined by the
higher ramification data of the cover $X \to X/G$ and the genus of $X/G$. ??genus of X/G?? higher ramification data of the cover $X \to X/G$ and the genus of $X$.
\end{mainthm} \end{mainthm}
% %
Note that if $p > 2$ and the $p$-Sylow subgroup of $G$ is not cyclic, the structure Note that if $p > 2$ and the $p$-Sylow subgroup of $G$ is not cyclic, the structure
@ -223,7 +230,9 @@ For any $k[H]$-module $M$ denote:
T^i M &= T^i_H M := M^{(i)}/M^{(i-1)} \quad \textrm{ for } i = 1, \ldots, p^n. T^i M &= T^i_H M := M^{(i)}/M^{(i-1)} \quad \textrm{ for } i = 1, \ldots, p^n.
\end{align*} \end{align*}
% %
Recall that $\dim_k T^i M$ determines the structure of $M$ completely (see \cite[p. 108]{Valentini_Madan_Automorphisms} -- they give the argument for $M := H^0(X, \Omega_X)$, Recall that $\dim_k T^i M$,
{\color{red} for $i=1, \ldots,p^n$}
determines the structure of $M$ completely (see \cite[p. 108]{Valentini_Madan_Automorphisms} -- they give the argument for $M := H^0(X, \Omega_X)$,
but it works for an arbitrary module). but it works for an arbitrary module).
Moreover, for $i > 0$: Moreover, for $i > 0$:
% %
@ -284,8 +293,23 @@ and $\mc T^i M := T^i_{H'} M$ for any $k[H']$-module $M$.
= 2g_Y - \dim_k H^1(G, k) + \dim_k H^2(G, k). = 2g_Y - \dim_k H^1(G, k) + \dim_k H^2(G, k).
\end{align*} \end{align*}
% %
Finally, note that if $G$ is cyclic then $\dim_k H^1(G, k) = \dim_k H^2(G, k)$ by ????. Finally, note that if $G$ is cyclic then $\dim_k H^1(G, k) = \dim_k H^2(G, k)$ by
{\color{red}
\cite[th. 6.2.2]{Weibel}.
}
\end{proof} \end{proof}
{\color{red}
\begin{Remark}
The equality $\dim_k H^1(G, k) = \dim_k H^2(G, k)$ does not hold for non-cyclic groups. For example it is known \cite[cor. II.4.3,th. II.4.4]{MR2035696} that the cohomological ring for the elementary abelian group $\mathbb{F}_p^s$ is given by
\[
H^* (G, \mathbb{F}_p)=
\begin{cases}
\mathbb{F}_2[x_1, \ldots,x_s] & \text{ if } p=2 \\
\wedge(x_{1}, \ldots, x_s) \otimes \mathbb{F}_p[x_1, \ldots,x_s] & \text{ if } p>2
\end{cases}
\]
\end{Remark}
}
% %
\begin{Lemma} \label{lem:trace_surjective} \begin{Lemma} \label{lem:trace_surjective}
Suppose that $G$ is a $p$-group. Suppose that $G$ is a $p$-group.
@ -799,5 +823,7 @@ Basis of holomorphic differentials:
} }
\bibliography{bibliografia} \bibliography{bibliografia,AKGeneral}
%
% \bibliography{AKGeneral}
\end{document} \end{document}