references for Chevalley Weil; H1 and H2 of G for elementary

This commit is contained in:
jgarnek 2024-12-06 13:01:13 +01:00
parent 356ac56be0
commit 09ff63cfc6
3 changed files with 165 additions and 131 deletions

View File

@ -1,125 +1,133 @@
\begin{thebibliography}{10} \def\cprime{$'$}
\begin{thebibliography}{10}
\bibitem{Alperin_local_rep}
J.~L. Alperin. \bibitem{MR2035696}
\newblock {\em Local representation theory}, volume~11 of {\em Cambridge Alejandro Adem and R.~James Milgram.
Studies in Advanced Mathematics}. \newblock {\em Cohomology of finite groups}, volume 309 of {\em Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]}.
\newblock Cambridge University Press, Cambridge, 1986. \newblock Springer-Verlag, Berlin, second edition, 2004.
\newblock Modular representations as an introduction to the local
representation theory of finite groups. \bibitem{Alperin_local_rep}
J.~L. Alperin.
\bibitem{Bleher_Camacho_Holomorphic_differentials} \newblock {\em Local representation theory}, volume~11 of {\em Cambridge Studies in Advanced Mathematics}.
F.~M. Bleher and N.~Camacho. \newblock Cambridge University Press, Cambridge, 1986.
\newblock Holomorphic differentials of {K}lein four covers. \newblock Modular representations as an introduction to the local representation theory of finite groups.
\newblock {\em J. Pure Appl. Algebra}, 227(10):Paper No. 107384, 27, 2023.
\bibitem{Bleher_Camacho_Holomorphic_differentials}
\bibitem{Bleher_Chinburg_Kontogeorgis_Galois_structure} F.~M. Bleher and N.~Camacho.
F.~M. Bleher, T.~Chinburg, and A.~Kontogeorgis. \newblock Holomorphic differentials of {K}lein four covers.
\newblock Galois structure of the holomorphic differentials of curves. \newblock {\em J. Pure Appl. Algebra}, 227(10):Paper No. 107384, 27, 2023.
\newblock {\em J. Number Theory}, 216:1--68, 2020.
\bibitem{Bleher_Chinburg_Kontogeorgis_Galois_structure}
\bibitem{Borevic_Faddeev} F.~M. Bleher, T.~Chinburg, and A.~Kontogeorgis.
Z.~I. {Borevi\v{c}} and D.~K. Faddeev. \newblock Galois structure of the holomorphic differentials of curves.
\newblock Theory of homology in groups. {II}. {P}rojective resolutions of \newblock {\em J. Number Theory}, 216:1--68, 2020.
finite groups.
\newblock {\em Vestnik Leningrad. Univ.}, 14(7):72--87, 1959. \bibitem{Borevic_Faddeev}
Z.~I. {Borevi\v{c}} and D.~K. Faddeev.
\bibitem{Chevalley_Weil_Uber_verhalten} \newblock Theory of homology in groups. {II}. {P}rojective resolutions of finite groups.
C.~Chevalley, A.~Weil, and E.~Hecke. \newblock {\em Vestnik Leningrad. Univ.}, 14(7):72--87, 1959.
\newblock \"{U}ber das verhalten der integrale 1. gattung bei automorphismen
des funktionenk\"{o}rpers. \bibitem{Chevalley_Weil_Uber_verhalten}
\newblock {\em Abh. Math. Sem. Univ. Hamburg}, 10(1):358--361, 1934. C.~Chevalley, A.~Weil, and E.~Hecke.
\newblock \"{U}ber das verhalten der integrale 1. gattung bei automorphismen des funktionenk\"{o}rpers.
\bibitem{Curtis_Reiner_Methods_II} \newblock {\em Abh. Math. Sem. Univ. Hamburg}, 10(1):358--361, 1934.
C.~W. Curtis and I.~Reiner.
\newblock {\em Methods of representation theory. {V}ol. {II}}. \bibitem{Curtis_Reiner_Methods_II}
\newblock Pure and Applied Mathematics (New York). John Wiley \& Sons, Inc., C.~W. Curtis and I.~Reiner.
New York, 1987. \newblock {\em Methods of representation theory. {V}ol. {II}}.
\newblock With applications to finite groups and orders, A Wiley-Interscience \newblock Pure and Applied Mathematics (New York). John Wiley \& Sons, Inc., New York, 1987.
Publication. \newblock With applications to finite groups and orders, A Wiley-Interscience Publication.
\bibitem{Dummigan_99} \bibitem{Dummigan_99}
N.~Dummigan. N.~Dummigan.
\newblock Complete {$p$}-descent for {J}acobians of {H}ermitian curves. \newblock Complete {$p$}-descent for {J}acobians of {H}ermitian curves.
\newblock {\em Compositio Math.}, 119(2):111--132, 1999. \newblock {\em Compositio Math.}, 119(2):111--132, 1999.
\bibitem{Garnek_equivariant} \bibitem{Ellingsrud_Lonsted_Equivariant_Lefschetz}
J.~Garnek. G.~Ellingsrud and K.~L\o~nsted.
\newblock Equivariant splitting of the {H}odge-de {R}ham exact sequence. \newblock An equivariant {L}efschetz formula for finite reductive groups.
\newblock {\em Math. Z.}, 300(2):1917--1938, 2022. \newblock {\em Math. Ann.}, 251(3):253--261, 1980.
\bibitem{Garnek_p_gp_covers} \bibitem{Garnek_equivariant}
J.~Garnek. J.~Garnek.
\newblock {$p$}-group {G}alois covers of curves in characteristic {$p$}. \newblock Equivariant splitting of the {H}odge-de {R}ham exact sequence.
\newblock {\em Trans. Amer. Math. Soc.}, 376(8):5857--5897, 2023. \newblock {\em Math. Z.}, 300(2):1917--1938, 2022.
\bibitem{Garnek_p_gp_covers_ii} \bibitem{Garnek_p_gp_covers}
J.~Garnek. J.~Garnek.
\newblock $p$-group {G}alois covers of curves in characteristic $p$ {II}, 2023. \newblock {$p$}-group {G}alois covers of curves in characteristic {$p$}.
\newblock {\em Trans. Amer. Math. Soc.}, 376(8):5857--5897, 2023.
\bibitem{garnek_indecomposables}
J.~Garnek. \bibitem{Garnek_p_gp_covers_ii}
\newblock Indecomposable direct summands of cohomologies of curves, 2024. J.~Garnek.
\newblock arXiv 2410.03319. \newblock $p$-group {G}alois covers of curves in characteristic $p$ {II}, 2023.
\bibitem{Gross_Rigid_local_systems_Gm} \bibitem{garnek_indecomposables}
B.~H. Gross. J.~Garnek.
\newblock Rigid local systems on {$\Bbb G_m$} with finite monodromy. \newblock Indecomposable direct summands of cohomologies of curves, 2024.
\newblock {\em Adv. Math.}, 224(6):2531--2543, 2010. \newblock arXiv 2410.03319.
\bibitem{Hartshorne1977} \bibitem{Gross_Rigid_local_systems_Gm}
R.~Hartshorne. B.~H. Gross.
\newblock {\em {Algebraic geometry}}. \newblock Rigid local systems on {$\Bbb G_m$} with finite monodromy.
\newblock Springer-Verlag, New York-Heidelberg, 1977. \newblock {\em Adv. Math.}, 224(6):2531--2543, 2010.
\newblock Graduate Texts in Mathematics, No. 52.
\bibitem{Hartshorne1977}
\bibitem{Heller_Reiner_Reps_in_integers_I} R.~Hartshorne.
A.~Heller and I.~Reiner. \newblock {\em {Algebraic geometry}}.
\newblock Representations of cyclic groups in rings of integers. {I}. \newblock Springer-Verlag, New York-Heidelberg, 1977.
\newblock {\em Ann. of Math. (2)}, 76:73--92, 1962. \newblock Graduate Texts in Mathematics, No. 52.
\bibitem{Higman} \bibitem{Heller_Reiner_Reps_in_integers_I}
D.~G. Higman. A.~Heller and I.~Reiner.
\newblock Indecomposable representations at characteristic {$p$}. \newblock Representations of cyclic groups in rings of integers. {I}.
\newblock {\em Duke Math. J.}, 21:377--381, 1954. \newblock {\em Ann. of Math. (2)}, 76:73--92, 1962.
\bibitem{laurent_kock_drinfeld} \bibitem{Higman}
L.~Laurent and B.~K{\"{o}}ck. D.~G. Higman.
\newblock The canonical representation of the drinfeld curve. \newblock Indecomposable representations at characteristic {$p$}.
\newblock {\em Mathematische Nachrichten}, online first, 2024. \newblock {\em Duke Math. J.}, 21:377--381, 1954.
\bibitem{Lusztig_Coxeter_orbits} \bibitem{laurent_kock_drinfeld}
G.~Lusztig. L.~Laurent and B.~K{\"{o}}ck.
\newblock Coxeter orbits and eigenspaces of {F}robenius. \newblock The canonical representation of the drinfeld curve.
\newblock {\em Invent. Math.}, 38(2):101--159, 1976/77. \newblock {\em Mathematische Nachrichten}, online first, 2024.
\bibitem{WardMarques_HoloDiffs} \bibitem{Lusztig_Coxeter_orbits}
S.~Marques and K.~Ward. G.~Lusztig.
\newblock Holomorphic differentials of certain solvable covers of the \newblock Coxeter orbits and eigenspaces of {F}robenius.
projective line over a perfect field. \newblock {\em Invent. Math.}, 38(2):101--159, 1976/77.
\newblock {\em Math. Nachr.}, 291(13):2057--2083, 2018.
\bibitem{WardMarques_HoloDiffs}
\bibitem{Prest} S.~Marques and K.~Ward.
M.~Prest. \newblock Holomorphic differentials of certain solvable covers of the projective line over a perfect field.
\newblock Wild representation type and undecidability. \newblock {\em Math. Nachr.}, 291(13):2057--2083, 2018.
\newblock {\em Comm. Algebra}, 19(3):919--929, 1991.
\bibitem{Prest}
\bibitem{Serre1979} M.~Prest.
J.-P. Serre. \newblock Wild representation type and undecidability.
\newblock {\em {Local fields}}, volume~67 of {\em {Graduate Texts in \newblock {\em Comm. Algebra}, 19(3):919--929, 1991.
Mathematics}}.
\newblock Springer-Verlag, New York-Berlin, 1979. \bibitem{Serre1979}
\newblock Translated from the French by Marvin Jay Greenberg. J.-P. Serre.
\newblock {\em {Local fields}}, volume~67 of {\em {Graduate Texts in Mathematics}}.
\bibitem{Steinberg_Representation_book} \newblock Springer-Verlag, New York-Berlin, 1979.
B.~Steinberg. \newblock Translated from the French by Marvin Jay Greenberg.
\newblock {\em Representation theory of finite groups}.
\newblock Universitext. Springer, New York, 2012. \bibitem{Steinberg_Representation_book}
\newblock An introductory approach. B.~Steinberg.
\newblock {\em Representation theory of finite groups}.
\bibitem{Valentini_Madan_Automorphisms} \newblock Universitext. Springer, New York, 2012.
R.~C. Valentini and M.~L. Madan. \newblock An introductory approach.
\newblock Automorphisms and holomorphic differentials in characteristic~{$p$}.
\newblock {\em J. Number Theory}, 13(1):106--115, 1981. \bibitem{Valentini_Madan_Automorphisms}
R.~C. Valentini and M.~L. Madan.
\end{thebibliography} \newblock Automorphisms and holomorphic differentials in characteristic~{$p$}.
\newblock {\em J. Number Theory}, 13(1):106--115, 1981.
\bibitem{Weibel}
Ch.~A. Weibel.
\newblock {\em An introduction to homological algebra}, volume~38 of {\em Cambridge Studies in Advanced Mathematics}.
\newblock Cambridge University Press, Cambridge, 1994.
\end{thebibliography}

Binary file not shown.

View File

@ -132,14 +132,21 @@ hyperref, bbm, mathtools, mathrsfs}
% %
\section{Introduction} \section{Introduction}
% %
The classical Chevalley--Weil formula (cf. \cite{Chevalley_Weil_Uber_verhalten}) gives an explicit description The classical Chevalley--Weil formula
(cf. \cite{Chevalley_Weil_Uber_verhalten},
{\color{red}
\cite{Ellingsrud_Lonsted_Equivariant_Lefschetz})
}
gives an explicit description
of the equivariant structure of the cohomology of a curve $X$ with a group action over a field of characteristic~$0$. Their formula depends on the so-called \emph{fundamental characters} of points $x \in X$ that are ramified in the cover $X \to X/G$. ???? of the equivariant structure of the cohomology of a curve $X$ with a group action over a field of characteristic~$0$. Their formula depends on the so-called \emph{fundamental characters} of points $x \in X$ that are ramified in the cover $X \to X/G$. ????
It is hard to expect such a formula over fields of characteristic~$p$. It is hard to expect such a formula over fields of characteristic~$p$.
Indeed, if $G$ is a finite group with a non-cyclic $p$-Sylow subgroup, the set of indecomposable $k[G]$-modules is infinite. If, moreover, $p > 2$ then the indecomposable $k[G]$-modules are considered impossible to classify (cf. \cite{Prest}). There are many results concerning equivariant structure of cohomologies for particular groups Indeed, if $G$ is a finite group with a non-cyclic $p$-Sylow subgroup, the set of indecomposable $k[G]$-modules is infinite. If, moreover, $p > 2$ then the indecomposable $k[G]$-modules are considered impossible to classify (cf. \cite{Prest}). There are many results concerning equivariant structure of cohomologies for particular groups
(see e.g.~\cite{Valentini_Madan_Automorphisms} for the case of cyclic groups, \cite{WardMarques_HoloDiffs} for abelian groups, \cite{Bleher_Chinburg_Kontogeorgis_Galois_structure} for groups with a cyclic Sylow subgroup, or \cite{Bleher_Camacho_Holomorphic_differentials} for the Klein group) or curves (cf. \cite{Lusztig_Coxeter_orbits}, \cite{Dummigan_99}, \cite{Gross_Rigid_local_systems_Gm}, \cite{laurent_kock_drinfeld}). Also, one may expect that that (at least in the case of $p$-groups) determining cohomologies comes down to Harbater--Katz--Gabber covers (cf. \cite{Garnek_p_gp_covers}, \cite{Garnek_p_gp_covers_ii}). However, there is no hope of obtaining a result similar to the one of Chevalley and Weil.\\ (see e.g.~\cite{Valentini_Madan_Automorphisms} for the case of cyclic groups, \cite{WardMarques_HoloDiffs} for abelian groups, \cite{Bleher_Chinburg_Kontogeorgis_Galois_structure} for groups with a cyclic Sylow subgroup, or \cite{Bleher_Camacho_Holomorphic_differentials} for the Klein group) or curves (cf. \cite{Lusztig_Coxeter_orbits}, \cite{Dummigan_99}, \cite{Gross_Rigid_local_systems_Gm}, \cite{laurent_kock_drinfeld}). Also, one may expect that that (at least in the case of $p$-groups) determining cohomologies comes down to Harbater--Katz--Gabber covers (cf. \cite{Garnek_p_gp_covers}, \cite{Garnek_p_gp_covers_ii}). However, there is no hope of obtaining a result similar to the one of Chevalley and Weil.\\
This brings attention to groups with cyclic $p$-Sylow subgroup. For those, the set of indecomposable modules is finite (cf. \cite{Higman}, \cite{Borevic_Faddeev}, \cite{Heller_Reiner_Reps_in_integers_I}). While their representation theory still This brings attention to groups with cyclic $p$-Sylow subgroup. For those, the set of
{\color{red} equivalence classes of }
indecomposable modules is finite (cf. \cite{Higman}, \cite{Borevic_Faddeev}, \cite{Heller_Reiner_Reps_in_integers_I}). While their representation theory still
seems a bit too complicated to derive a general formula for the cohomologies, seems a bit too complicated to derive a general formula for the cohomologies,
the article~\cite{Bleher_Chinburg_Kontogeorgis_Galois_structure} proved that the article~\cite{Bleher_Chinburg_Kontogeorgis_Galois_structure} proved that
the $k[G]$-module structure of $H^0(X, \Omega_X)$ is determined by the higher ramification data (i.e. higher ramification groups and the fundamental characters of the ramification locus). The main result of this article is a similar statement for the de Rham cohomology. the $k[G]$-module structure of $H^0(X, \Omega_X)$ is determined by the higher ramification data (i.e. higher ramification groups and the fundamental characters of the ramification locus). The main result of this article is a similar statement for the de Rham cohomology.
@ -148,7 +155,7 @@ the $k[G]$-module structure of $H^0(X, \Omega_X)$ is determined by the higher ra
Suppose that $G$ is a group with a $p$-cyclic Sylow subgroup. Suppose that $G$ is a group with a $p$-cyclic Sylow subgroup.
Let $X$ be a curve with an action of~$G$ over a field $k$ of characteristic $p$. Let $X$ be a curve with an action of~$G$ over a field $k$ of characteristic $p$.
The $k[G]$-module structure of $H^1_{dR}(X)$ is uniquely determined by the The $k[G]$-module structure of $H^1_{dR}(X)$ is uniquely determined by the
higher ramification data of the cover $X \to X/G$ and the genus of $X/G$. ??genus of X/G?? higher ramification data of the cover $X \to X/G$ and the genus of $X$.
\end{mainthm} \end{mainthm}
% %
Note that if $p > 2$ and the $p$-Sylow subgroup of $G$ is not cyclic, the structure Note that if $p > 2$ and the $p$-Sylow subgroup of $G$ is not cyclic, the structure
@ -223,7 +230,9 @@ For any $k[H]$-module $M$ denote:
T^i M &= T^i_H M := M^{(i)}/M^{(i-1)} \quad \textrm{ for } i = 1, \ldots, p^n. T^i M &= T^i_H M := M^{(i)}/M^{(i-1)} \quad \textrm{ for } i = 1, \ldots, p^n.
\end{align*} \end{align*}
% %
Recall that $\dim_k T^i M$ determines the structure of $M$ completely (see \cite[p. 108]{Valentini_Madan_Automorphisms} -- they give the argument for $M := H^0(X, \Omega_X)$, Recall that $\dim_k T^i M$,
{\color{red} for $i=1, \ldots,p^n$}
determines the structure of $M$ completely (see \cite[p. 108]{Valentini_Madan_Automorphisms} -- they give the argument for $M := H^0(X, \Omega_X)$,
but it works for an arbitrary module). but it works for an arbitrary module).
Moreover, for $i > 0$: Moreover, for $i > 0$:
% %
@ -284,8 +293,23 @@ and $\mc T^i M := T^i_{H'} M$ for any $k[H']$-module $M$.
= 2g_Y - \dim_k H^1(G, k) + \dim_k H^2(G, k). = 2g_Y - \dim_k H^1(G, k) + \dim_k H^2(G, k).
\end{align*} \end{align*}
% %
Finally, note that if $G$ is cyclic then $\dim_k H^1(G, k) = \dim_k H^2(G, k)$ by ????. Finally, note that if $G$ is cyclic then $\dim_k H^1(G, k) = \dim_k H^2(G, k)$ by
{\color{red}
\cite[th. 6.2.2]{Weibel}.
}
\end{proof} \end{proof}
{\color{red}
\begin{Remark}
The equality $\dim_k H^1(G, k) = \dim_k H^2(G, k)$ does not hold for non-cyclic groups. For example it is known \cite[cor. II.4.3,th. II.4.4]{MR2035696} that the cohomological ring for the elementary abelian group $\mathbb{F}_p^s$ is given by
\[
H^* (G, \mathbb{F}_p)=
\begin{cases}
\mathbb{F}_2[x_1, \ldots,x_s] & \text{ if } p=2 \\
\wedge(x_{1}, \ldots, x_s) \otimes \mathbb{F}_p[x_1, \ldots,x_s] & \text{ if } p>2
\end{cases}
\]
\end{Remark}
}
% %
\begin{Lemma} \label{lem:trace_surjective} \begin{Lemma} \label{lem:trace_surjective}
Suppose that $G$ is a $p$-group. Suppose that $G$ is a $p$-group.
@ -799,5 +823,7 @@ Basis of holomorphic differentials:
} }
\bibliography{bibliografia} \bibliography{bibliografia,AKGeneral}
%
% \bibliography{AKGeneral}
\end{document} \end{document}