explicit formula for sylow subgroup Zp

This commit is contained in:
jgarnek 2024-12-09 21:01:45 +01:00
parent e8f93d5bda
commit 0cdda6cee7
2 changed files with 19 additions and 7 deletions

Binary file not shown.

View File

@ -187,7 +187,10 @@ Throughout the paper we will use the following notation for any $P \in X(\ol k)$
\item $u^{(0)}_{X/Y, P} := 1$ for any ramified point $P \in X(\ol k)$ \item $u^{(0)}_{X/Y, P} := 1$ for any ramified point $P \in X(\ol k)$
(note that this is not a standard convention), (note that this is not a standard convention),
\item $u_{X/Y, P} := u_{X/Y, P}^{(m_{X/Y, P})}$ is the last ramification jump. \item $u_{X/Y, P} := u_{X/Y, P}^{(m_{X/Y, P})}$ is the last ramification jump,
\item $\theta_{X/Y, P} : G_P \to \Aut_k(\mf m_P/\mf m_P^2) \cong k^{\times}$
is the fundamental character of~$P$.
\end{itemize} \end{itemize}
% %
By Hasse--Arf theorem (cf. By Hasse--Arf theorem (cf.
@ -221,14 +224,15 @@ then $U^{\sigma} := \ker(\sigma - 1)$ (the socle of $U$) is an indecomposable
$k[C]$-module. It turns out that the map $k[C]$-module. It turns out that the map
% %
\begin{align*} \begin{align*}
\Indec(k[G]) \to \Indec(k[C]) \times \{ 1, \ldots, p^n \}\\ \Indec(k[G]) &\to \Indec(k[C]) \times \{ 1, \ldots, p^n \}\\
U \mapsto \left(U^{\sigma}, \frac{\dim_k U}{\dim_k U^{\sigma}} \right) U &\mapsto \left(U^{\sigma}, \frac{\dim_k U}{\dim_k U^{\sigma}} \right)
\end{align*} \end{align*}
% %
is a bijection (cf. \cite[p. 35--37, 42 -- 43]{Alperin_local_rep}). We write is a bijection (cf. \cite[p. 35--37, 42 -- 43]{Alperin_local_rep}). We write
$\mc V(M, i)$ for the $k[G]$-module corresponding to a pair $(M, i) \in \Indec(k[C]) \times \{ 1, \ldots, p^n \}$. $\mc V(M, i)$ for the $k[G]$-module corresponding to a pair $(M, i) \in \Indec(k[C]) \times \{ 1, \ldots, p^n \}$.
Finally, we recall the classical Chevalley-Weil formula. Keep the above notation and assume that $p \nmid \# G$. For any $Q \in Y(k)$ let $\chi_Q : G_Q \to k^{\times}$ be the fundamental character of $G_Q$ acting on the tangent space of $Q$. Then: Finally, we recall the classical Chevalley-Weil formula. Keep the above notation and assume that $p \nmid \# G$. For any $e \in \NN$, denote by $\chi_e$ the primitive character of a cyclic group of order $e$.
Then:
% %
\begin{equation} \begin{equation}
H^0(X, \Omega_X) \cong \bigoplus_{M \in \Indec(k[G])} M^{\oplus a_M}, H^0(X, \Omega_X) \cong \bigoplus_{M \in \Indec(k[G])} M^{\oplus a_M},
@ -237,10 +241,10 @@ Finally, we recall the classical Chevalley-Weil formula. Keep the above notation
where: where:
% %
\begin{align*} \begin{align*}
a_M := - \dim_k M + \sum_{Q \in Y(k)} \sum_{i = 0}^{e_{X/Y, Q} - 1} \left\langle \frac{-i}{e_{X/Y, Q}} \right\rangle \cdot N_{P, i}(M), a_M := - \dim_k M + \sum_{Q \in Y(k)} \sum_{i = 0}^{e_{X/Y, Q} - 1} \frac{e_{X/Y, Q} - i}{e_{X/Y, Q}} \cdot N_{P, i}(M),
\end{align*} \end{align*}
% %
and $N_{P, i}(M) := ???$. and $N_{P, i}(M)$ is the multiplicity of the character $\chi_{e_Q}^i$ in the $k[G_Q]$-module $M \otimes_{k[G_Q]} \theta_{X/Y, Q}$.
\section{Cyclic covers} \section{Cyclic covers}
% %
@ -788,7 +792,15 @@ Keep the above notation. If $G$ acts on a curve $X$ and the cover $X \to X/H$ is
H^1_{dR}(X) \cong \bigoplus_{M \in \Indec(C)} \mc V(M, p-1)^{\oplus b_M} \oplus \mc V(M, p)^{\oplus c_M}, H^1_{dR}(X) \cong \bigoplus_{M \in \Indec(C)} \mc V(M, p-1)^{\oplus b_M} \oplus \mc V(M, p)^{\oplus c_M},
\] \]
% %
where $b_M := \ldots$, $c_M := \ldots$. where
%
\begin{align*}
b_M &:= (1 - \frac 1p) \cdot \dim_k M + \sum_{Q \in (X/G)(k)} \sum_{i < e_{X/Y, Q}??}
\end{align*}
%
$b_M := \ldots$, $c_M := \ldots$.
\end{Proposition} \end{Proposition}
\begin{proof} \begin{proof}
??? ???