pf of Thm 2.1 ctn - jumps 1
This commit is contained in:
parent
85c9c57b47
commit
1645131c0d
Binary file not shown.
@ -154,8 +154,8 @@ the $t$th upper (resp. lower) ramification jump of $X \to Y$ at $P$.
|
|||||||
Suppose that $\pi : X \to Y$ is a $\ZZ/p^n$-cover. Let $\langle G_P : P \in X(k) \rangle = \ZZ/p^m = G_{P_0}$ for $P_0 \in X(k)$. Then, as $k[\ZZ/p^n]$-modules:
|
Suppose that $\pi : X \to Y$ is a $\ZZ/p^n$-cover. Let $\langle G_P : P \in X(k) \rangle = \ZZ/p^m = G_{P_0}$ for $P_0 \in X(k)$. Then, as $k[\ZZ/p^n]$-modules:
|
||||||
%
|
%
|
||||||
\[
|
\[
|
||||||
H^1_{dR}(X) \cong J_{p^n}^{2 (g_Y - 1)} \oplus J_{p^n - p^{n-m} + 1}^2 \oplus \bigoplus_{P \neq P_0} J_{p^n - p^n/e_P}^2
|
H^1_{dR}(X) \cong J_{p^n}^{2 (g_Y - 1)} \oplus J_{p^n - p^{n-m} + 1}^2 \oplus \bigoplus_{\substack{P \in X(k)\\ P \neq P_0}} J_{p^n - p^n/e_P}^2
|
||||||
\oplus \bigoplus_P \bigoplus_{t = 0}^{n-1} J_{p^n - p^t}^{u_{P}^{(t+1)} - u_{P}^{(t)}},
|
\oplus \bigoplus_{P \in X(k)} \bigoplus_{t = 0}^{n-1} J_{p^n - p^t}^{u_{P}^{(t+1)} - u_{P}^{(t)}},
|
||||||
\]
|
\]
|
||||||
%
|
%
|
||||||
where $e_P := e_{X/Y, P}$ and $u_P^{(t)} := u_{X/Y, P}^{(t)}$.
|
where $e_P := e_{X/Y, P}$ and $u_P^{(t)} := u_{X/Y, P}^{(t)}$.
|
||||||
@ -182,9 +182,9 @@ Note also that for $j \ge 1$:
|
|||||||
(in particular, $u_{X/Y, P}^{(1)} = l_{X/Y, P}^{(1)}$). Moreover, if $X' \to Y$ is the $\ZZ/p^N$-subcover of $X \to Y$ for $N \le n$ then:
|
(in particular, $u_{X/Y, P}^{(1)} = l_{X/Y, P}^{(1)}$). Moreover, if $X' \to Y$ is the $\ZZ/p^N$-subcover of $X \to Y$ for $N \le n$ then:
|
||||||
%
|
%
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item $u_{X'/Y, P}^{(t)} = u_{X'/Y, P}^{(t)}$ for $t \le N$,
|
\item $u_{X'/Y, P}^{(t)} = u_{X/Y, P}^{(t)}$ for $t \le N$,
|
||||||
|
|
||||||
\item $l_{X/X', P}^{(t)} = l_{X/X', P}^{(t + N)}$ for $t \le n-N$.
|
\item $l_{X/X', P}^{(t)} = l_{X/Y, P}^{(t + N)}$ for $t \le n-N$.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
|
|
||||||
@ -240,7 +240,7 @@ and one shows similarly that the trace map
|
|||||||
\tr_{X/Y} : H^1(X, \mc O_X) \to H^1(Y, \mc O_Y)
|
\tr_{X/Y} : H^1(X, \mc O_X) \to H^1(Y, \mc O_Y)
|
||||||
\end{equation*}
|
\end{equation*}
|
||||||
%
|
%
|
||||||
is surjective. Therefore, since the outer trace maps in the diagram are surjective,
|
is surjective. Therefore, since the outer vertical maps in the diagram are surjective,
|
||||||
the trace map on the de Rham cohomology must be surjective as well.
|
the trace map on the de Rham cohomology must be surjective as well.
|
||||||
%
|
%
|
||||||
\end{proof}
|
\end{proof}
|
||||||
@ -261,7 +261,7 @@ We define $m_{\sigma - 1}$ as follows:
|
|||||||
\]
|
\]
|
||||||
%
|
%
|
||||||
where for $\ol x \in T^i M$ we picked any representative $x \in M^{(i)}$.
|
where for $\ol x \in T^i M$ we picked any representative $x \in M^{(i)}$.
|
||||||
If $x \in M^{(i+1)} := \ker((\sigma - 1)^{i+1})$ then clearly $(\sigma - 1) x \in M^{(i)}$.
|
Indeed, if $x \in M^{(i+1)} := \ker((\sigma - 1)^{i+1})$ then clearly $(\sigma - 1) x \in M^{(i)}$.
|
||||||
Moreover $(\sigma - 1) \cdot x \in M^{(i-1)}$ holds if and only if $x \in M^{(i)}$. This
|
Moreover $(\sigma - 1) \cdot x \in M^{(i-1)}$ holds if and only if $x \in M^{(i)}$. This
|
||||||
shows that $m_{\sigma - 1}$ is well-defined and injective.
|
shows that $m_{\sigma - 1}$ is well-defined and injective.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
@ -325,35 +325,37 @@ shows that $m_{\sigma - 1}$ is well-defined and injective.
|
|||||||
By induction hypothesis for $H'$ acting on $X$, we have the following isomorphism of $k[H']$-modules:
|
By induction hypothesis for $H'$ acting on $X$, we have the following isomorphism of $k[H']$-modules:
|
||||||
%
|
%
|
||||||
\[
|
\[
|
||||||
\mc M \cong \mc J_{p^{n-1}}^{2 (g_{Y'} - 1)} \oplus \mc J_{p^{n-1} - p^{n - 1 -m'} + 1}^2 \oplus \bigoplus_{P \neq P_0} \mc J_{p^{n-1} - p^{n-1}/e'_P}^2
|
\mc M \cong \mc J_{p^{n-1}}^{2 (g_{Y'} - 1)} \oplus \mc J_{p^{n-1} - p^{n - m} + 1}^2 \oplus \bigoplus_{\substack{P \in X(k)\\P \neq P_0}} \mc J_{p^{n-1} - p^{n-1}/e'_P}^2
|
||||||
\oplus \bigoplus_P \bigoplus_{t = 0}^{n-1} \mc J_{p^n - p^t}^{u_{X/Y', P}^{(t+1)} - u_{X/Y', P}^{(t)}}
|
\oplus \bigoplus_{P \in X(k)} \bigoplus_{t = 0}^{n-2} \mc J_{p^n - p^t}^{u_{X/Y', P}^{(t+1)} - u_{X/Y', P}^{(t)}}
|
||||||
\]
|
\]
|
||||||
%
|
%
|
||||||
where $e'_P := e_{X/Y', P}$ and
|
where $e'_P := e_{X/Y', P}$. Note that
|
||||||
%
|
%
|
||||||
\[
|
\[
|
||||||
m' :=
|
??? p \cdot u^{(n)} = u^{(n-1)} + (p-1) \cdot l^{(1)} ???.
|
||||||
\begin{cases}
|
|
||||||
n-1, & \textrm{ if } m = n,\\
|
|
||||||
m, & \textrm{ otherwise.}
|
|
||||||
\end{cases}
|
|
||||||
\]
|
\]
|
||||||
%
|
%
|
||||||
Therefore, for $i \le p^n - p^{n-1}$
|
Therefore, for $i \le p^{n-1} - p^{n-2}$, using the Riemann--Hurwitz formula (cf. ????):
|
||||||
%
|
%
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\dim_k \mc T^i \mc M =
|
\dim_k \mc T^i \mc M &=
|
||||||
\begin{cases}
|
2(g_{Y'} - 1) + 2 + 2(\# R - 1) + \sum_{P \in X(k)} (u_{X/Y', P}^{(n-1)} - 1)\\
|
||||||
???,
|
&= 2 p (g_Y - 1) + \sum_{Q \in Y'(k)} (p-1) \cdot (l_{Y'/Y, Q}^{(1)} + 1)\\
|
||||||
\end{cases}
|
&+ 2 + 2(\# R - 1) + \sum_{P \in X(k)} (u_{X/Y', P}^{(n-1)} - 1)\\
|
||||||
|
&= ?? p \cdot \left( 2(g_Y - 1) + 2 + 2(\# R - 1) + \sum_{P \in X(k)} (u_{X/Y, P}^{(n)} - 1) \right)
|
||||||
\end{align*}
|
\end{align*}
|
||||||
%
|
%
|
||||||
|
where
|
||||||
|
%
|
||||||
|
\[ R := \{ P \in X(k) : e_P > 1 \} = \{ P \in X(k) : e'_P > 1 \}. \]
|
||||||
|
%
|
||||||
In particular, $\dim_k \mc T^1 \mc M = \ldots = \dim_k \mc T^{p^{n-1} - p^{n-2}} \mc M$.
|
In particular, $\dim_k \mc T^1 \mc M = \ldots = \dim_k \mc T^{p^{n-1} - p^{n-2}} \mc M$.
|
||||||
Thus by Lemma~\ref{lem:lemma_mcT_and_T}
|
Thus by Lemma~\ref{lem:lemma_mcT_and_T}
|
||||||
%
|
%
|
||||||
\[
|
\begin{align*}
|
||||||
\dim_k T^1 \mc M = \ldots = \dim_k T^{p^n - p^{n-1}} \mc M = \frac{1}{p} \dim_k \mc T^1 \mc M = ????.
|
\dim_k T^1 \mc M &= \ldots = \dim_k T^{p^n - p^{n-1}} \mc M = \frac{1}{p} \dim_k \mc T^1 \mc M\\
|
||||||
\]
|
&= 2(g_Y - 1) + 2 + 2(\# R - 1) + \sum_{P \in X(k)} (u_{X/Y, P}^{(n)} - 1).
|
||||||
|
\end{align*}
|
||||||
%
|
%
|
||||||
By Lemma~\ref{lem:trace_surjective} since $X \to X''$ is not \'{e}tale, the map $\tr_{X/X''} : H^1_{dR}(X) \to H^1_{dR}(X'')$ is surjective. Recall that
|
By Lemma~\ref{lem:trace_surjective} since $X \to X''$ is not \'{e}tale, the map $\tr_{X/X''} : H^1_{dR}(X) \to H^1_{dR}(X'')$ is surjective. Recall that
|
||||||
in $\FF_p[x]$ we have the identity:
|
in $\FF_p[x]$ we have the identity:
|
||||||
|
Loading…
Reference in New Issue
Block a user