diff --git a/article_de_rham_cyclic.tex b/article_de_rham_cyclic.tex index 6516376..72ae431 100644 --- a/article_de_rham_cyclic.tex +++ b/article_de_rham_cyclic.tex @@ -753,6 +753,22 @@ Let $X$ be a curve with an action of $G$ and write $Y := X/H$. For any $k[C]$-mo % \section{Examples} % +Assume that $G$ is a group with a normal $p$-Sylow subgroup $H$ of order $p$. Let $C := G/H$. Then $G = H \rtimes_{\chi} C$ +for a homomorphism $\chi : C \to \FF_p^{\times}$. +% +\begin{Proposition} +Keep the above notation. If $G$ acts on a curve $X$ and the cover $X \to X/H$ is not \'{e}tale, then: +% +\[ + H^1_{dR}(X) \cong \bigoplus_{M \in \Indec(C)} \mc V(M, p-1)^{\oplus b_M} \oplus \mc V(M, p)^{\oplus c_M}, +\] +% +where $b_M := \ldots$, $c_M := \ldots$. +\end{Proposition} +\begin{proof} + ??? +\end{proof} + \noindent Let $p > 2$. Consider the Mumford curve % \[