first commit
This commit is contained in:
commit
2a54cefac7
3
article_de_rham_cyclic.bbl
Normal file
3
article_de_rham_cyclic.bbl
Normal file
@ -0,0 +1,3 @@
|
||||
\begin{thebibliography}{}
|
||||
|
||||
\end{thebibliography}
|
3
article_de_rham_cyclic.out
Normal file
3
article_de_rham_cyclic.out
Normal file
@ -0,0 +1,3 @@
|
||||
\BOOKMARK [1][-]{section.1}{\376\377\0001\000.\000\040}{}% 1
|
||||
\BOOKMARK [1][-]{section.2}{\376\377\0002\000.\000\040\000C\000y\000c\000l\000i\000c\000\040\000c\000o\000v\000e\000r\000s}{}% 2
|
||||
\BOOKMARK [1][-]{section*.1}{\376\377\000R\000e\000f\000e\000r\000e\000n\000c\000e\000s}{}% 3
|
BIN
article_de_rham_cyclic.synctex.gz
Normal file
BIN
article_de_rham_cyclic.synctex.gz
Normal file
Binary file not shown.
210
article_de_rham_cyclic.tex
Normal file
210
article_de_rham_cyclic.tex
Normal file
@ -0,0 +1,210 @@
|
||||
% !TeX spellcheck = en_GB
|
||||
\RequirePackage[l2tabu, orthodox]{nag}
|
||||
\documentclass[a4paper,12pt]{amsart}
|
||||
%\usepackage[margin=32mm,bottom=40mm]{geometry}
|
||||
%\renewcommand{\baselinestretch}{1.1}
|
||||
\usepackage{microtype}
|
||||
\usepackage[charter]{mathdesign}
|
||||
\let\circledS\undefined
|
||||
%
|
||||
\usepackage[T1]{fontenc}
|
||||
\usepackage{tikz, tikz-cd, stmaryrd, amsmath, amsthm, amssymb,
|
||||
hyperref, bbm, mathtools, mathrsfs}
|
||||
%\usepackage{upgreek}
|
||||
\newcommand{\upomega}{\boldsymbol{\omega}}
|
||||
\newcommand{\upeta}{\boldsymbol{\eta}}
|
||||
\newcommand{\dd}{\boldsymbol{d}}
|
||||
\usepackage[shortlabels]{enumitem}
|
||||
\usetikzlibrary{arrows}
|
||||
\usetikzlibrary{positioning}
|
||||
\usepackage[utf8x]{inputenc}
|
||||
% \usepackage[MeX]{polski}
|
||||
\newcommand{\bb}{\textbf}
|
||||
\newcommand{\uu}{\underline}
|
||||
\newcommand{\ol}{\overline}
|
||||
\newcommand{\mc}{\mathcal}
|
||||
\newcommand{\wh}{\widehat}
|
||||
\newcommand{\wt}{\widetilde}
|
||||
\newcommand{\mf}{\mathfrak}
|
||||
\newcommand{\ms}{\mathscr}
|
||||
\renewcommand{\AA}{\mathbb{A}}
|
||||
\newcommand{\II}{\mathbb{I}}
|
||||
\newcommand{\HH}{\mathbb{H}}
|
||||
\newcommand{\ZZ}{\mathbb{Z}}
|
||||
\newcommand{\CC}{\mathbb{C}}
|
||||
\newcommand{\RR}{\mathbb{R}}
|
||||
\newcommand{\PP}{\mathbb{P}}
|
||||
\newcommand{\QQ}{\mathbb{Q}}
|
||||
\newcommand{\LL}{\mathbb{L}}
|
||||
\newcommand{\NN}{\mathbb{N}}
|
||||
\newcommand{\FF}{\mathbb{F}}
|
||||
\newcommand{\VV}{\mathbb{V}}
|
||||
\newcommand{\ddeg}{\textbf{deg}\,}
|
||||
\DeclareMathOperator{\SSh}{-Sh}
|
||||
\DeclareMathOperator{\Ind}{Ind}
|
||||
\DeclareMathOperator{\pr}{pr}
|
||||
\DeclareMathOperator{\tr}{tr}
|
||||
\DeclareMathOperator{\Sh}{Sh}
|
||||
\DeclareMathOperator{\diag}{diag}
|
||||
\DeclareMathOperator{\sgn}{sgn}
|
||||
\DeclareMathOperator{\Divv}{Div}
|
||||
\DeclareMathOperator{\Coind}{Coind}
|
||||
\DeclareMathOperator{\coker}{coker}
|
||||
\DeclareMathOperator{\im}{im}
|
||||
\DeclareMathOperator{\id}{id}
|
||||
\DeclareMathOperator{\Tot}{Tot}
|
||||
\DeclareMathOperator{\Span}{Span}
|
||||
\DeclareMathOperator{\res}{res}
|
||||
\DeclareMathOperator{\Gl}{Gl}
|
||||
\DeclareMathOperator{\Sl}{Sl}
|
||||
\DeclareMathOperator{\GCD}{GCD}
|
||||
\DeclareMathOperator{\ord}{ord}
|
||||
\DeclareMathOperator{\Spec}{Spec}
|
||||
\DeclareMathOperator{\rank}{rank}
|
||||
\DeclareMathOperator{\Gal}{Gal}
|
||||
\DeclareMathOperator{\Proj}{Proj}
|
||||
\DeclareMathOperator{\Ext}{Ext}
|
||||
\DeclareMathOperator{\Hom}{Hom}
|
||||
\DeclareMathOperator{\End}{End}
|
||||
\DeclareMathOperator{\cha}{char}
|
||||
\DeclareMathOperator{\Cl}{Cl}
|
||||
\DeclareMathOperator{\Jac}{Jac}
|
||||
\DeclareMathOperator{\Lie}{Lie}
|
||||
\DeclareMathOperator{\GSp}{GSp}
|
||||
\DeclareMathOperator{\Sp}{Sp}
|
||||
\DeclareMathOperator{\Sym}{Sym}
|
||||
\DeclareMathOperator{\qlog}{qlog}
|
||||
\DeclareMathOperator{\Aut}{Aut}
|
||||
\DeclareMathOperator{\divv}{div}
|
||||
\DeclareMathOperator{\mmod}{-mod}
|
||||
\DeclareMathOperator{\ev}{ev}
|
||||
\DeclareMathOperator{\Indec}{Indec}
|
||||
\DeclareMathOperator{\pole}{pole}
|
||||
\theoremstyle{plain}
|
||||
\newtheorem{Theorem}{Theorem}[section]
|
||||
\newtheorem*{mainthm}{Main Theorem}
|
||||
\newtheorem{Remark}[Theorem]{Remark}
|
||||
\newtheorem{Lemma}[Theorem]{Lemma}
|
||||
\newtheorem{Corollary}[Theorem]{Corollary}
|
||||
\newtheorem{Conjecture}[Theorem]{Conjecture}
|
||||
\newtheorem{Proposition}[Theorem]{Proposition}
|
||||
\newtheorem{Setup}[Theorem]{Setup}
|
||||
\newtheorem{Example}[Theorem]{Example}
|
||||
\newtheorem{manualtheoreminner}{Theorem}
|
||||
\newenvironment{manualtheorem}[1]{%
|
||||
\renewcommand\themanualtheoreminner{#1}%
|
||||
\manualtheoreminner
|
||||
}{\endmanualtheoreminner}
|
||||
\newtheorem{Question}[Theorem]{Question}
|
||||
|
||||
\theoremstyle{definition}
|
||||
\newtheorem{Definition}[Theorem]{Definition}
|
||||
|
||||
%\theoremstyle{remark}
|
||||
|
||||
|
||||
|
||||
\renewcommand{\thetable}{\arabic{section}.\arabic{Theorem}}
|
||||
|
||||
%\usepackage{refcheck}
|
||||
\numberwithin{equation}{section}
|
||||
\hyphenation{Woj-ciech}
|
||||
%opening
|
||||
\begin{document}
|
||||
|
||||
\title[The de Rham...]{?? The de Rham cohomology of covers with cyclic $p$-Sylow subgroup}
|
||||
\author[A. Kontogeorgis and J. Garnek]{Aristides Kontogeorgis and J\k{e}drzej Garnek}
|
||||
\address{???}
|
||||
\email{jgarnek@amu.edu.pl}
|
||||
\subjclass[2020]{Primary 14G17, Secondary 14H30, 20C20}
|
||||
\keywords{de~Rham cohomology, algebraic curves, group actions,
|
||||
characteristic~$p$}
|
||||
\urladdr{http://jgarnek.faculty.wmi.amu.edu.pl/}
|
||||
\date{}
|
||||
|
||||
\begin{abstract}
|
||||
????
|
||||
\end{abstract}
|
||||
|
||||
\maketitle
|
||||
\bibliographystyle{plain}
|
||||
%
|
||||
\section{}
|
||||
%
|
||||
\section{Cyclic covers}
|
||||
%
|
||||
Let $u_{X/Y, P}^{(t)}$ (resp. $l_{X/Y, P}^{(t)}$) denote the $t$th upper (resp. lower)
|
||||
ramification jump of $X \to Y$ at $P$.
|
||||
%
|
||||
\begin{Theorem}
|
||||
Suppose that $\pi : X \to Y$ is a $\ZZ/p^n$-cover. Let $\langle G_P : P \in X(k) \rangle = \ZZ/p^m = G_{P_0}$ for $P_0 \in X(k)$. Then, as $k[\ZZ/p^n]$-modules:
|
||||
%
|
||||
\[
|
||||
H^1_{dR}(X) \cong J_{p^n}^{2 (g_Y - 1)} \oplus J_{p^n - p^{n-m} + 1}^2 \oplus \bigoplus_{P \neq P_0} J_{p^n - \frac{p^n}{e_{X/Y, P}}}^2
|
||||
\oplus \bigoplus_P \bigoplus_{t = 0}^{n-1} J_{p^n - p^t}^{u_{X/Y, P}^{(t+1)} - u_{X/Y, P}^{(t)}}.
|
||||
\]
|
||||
\end{Theorem}
|
||||
%
|
||||
Write $H := \ZZ/p^n = \langle \sigma \rangle$.
|
||||
For any $k[H]$-module $M$ denote:
|
||||
%
|
||||
\begin{align*}
|
||||
M^{(i)} &:= \ker ((\sigma - 1)^i : M \to M),\\
|
||||
T^i M &= T^i_H M := M^{(i)}/M^{(i-1)} \quad \textrm{ for } i = 1, \ldots, p^n.
|
||||
\end{align*}
|
||||
%
|
||||
Recall that $\dim_k T^i M$ determines the structure of $M$ completely (cf. ????).
|
||||
In the inductive step we use also the group $\ZZ/p^{n-1}$. In this case
|
||||
we denote the irreducible $k[\ZZ/p^{n-1}]$-modules by $\mc J_1, \ldots, \mc J_{p^{n-1}}$
|
||||
and $\mc T^i M := T^i_{\ZZ/p^{n-1}} M$ for any $k[\ZZ/p^{n-1}]$-module $M$.
|
||||
|
||||
\begin{Lemma}
|
||||
If the $G$-cover $X \to Y$ is \'{e}tale, then the natural map
|
||||
%
|
||||
\[
|
||||
H^1_{dR}(Y) \to H^1_{dR}(X)^G
|
||||
\]
|
||||
%
|
||||
is an isomorphism.
|
||||
\end{Lemma}
|
||||
\begin{proof}
|
||||
????
|
||||
\end{proof}
|
||||
%
|
||||
\begin{Lemma}
|
||||
If the $G$-cover $X \to Y$ is totally ramified, then the map
|
||||
%
|
||||
\[
|
||||
\tr_{X/Y} : H^1_{dR}(X) \to H^1_{dR}(Y)
|
||||
\]
|
||||
%
|
||||
is an epimorphism.
|
||||
\end{Lemma}
|
||||
\begin{proof}
|
||||
????
|
||||
\end{proof}
|
||||
%
|
||||
|
||||
\begin{proof}[Proof of Theorem ????]
|
||||
We use the following notation: $H' := \langle \sigma^p \rangle \cong \ZZ/p^{n-1}$,
|
||||
$H'' := H/\langle \sigma^{p^{n-1}} \rangle \cong \ZZ/p^{n-1}$, $Y' := X/H'$, $X'' := X/H''$.
|
||||
Write also $M := H^1_{dR}(X)$.
|
||||
By induction hypothesis for $H'$ acting on $X$, we have the following isomorphism of $k[H']$-modules:
|
||||
%
|
||||
\[
|
||||
M \cong \mc J_{p^{n-1}}^{2 (g_{Y'} - 1)} \oplus \mc J_{p^{n-1} - p^{n-m ??} + 1}^2 \oplus \bigoplus_{P \neq P_0} \mc J_{p^n - \frac{p^{n-1}}{e_{X/Y', P}}}^2
|
||||
\oplus \bigoplus_P \bigoplus_{t = 0}^{n-1} \mc J_{p^n - p^t}^{u_{X/Y', P}^{(t+1)} - u_{X/Y', P}^{(t)}}
|
||||
\]
|
||||
%
|
||||
Therefore, for $???$
|
||||
%
|
||||
\begin{align*}
|
||||
\dim_k \mc T^i M =
|
||||
\begin{cases}
|
||||
???,
|
||||
\end{cases}
|
||||
\end{align*}
|
||||
\end{proof}
|
||||
|
||||
\bibliography{bibliografia}
|
||||
\end{document}
|
Loading…
Reference in New Issue
Block a user