before changing etale case

This commit is contained in:
jgarnek 2024-12-02 20:55:56 +01:00
parent 48e2827cba
commit 3d4fdbd2a2
3 changed files with 23 additions and 4 deletions

View File

@ -1,5 +1,13 @@
\begin{thebibliography}{10} \begin{thebibliography}{10}
\bibitem{Alperin_local_rep}
J.~L. Alperin.
\newblock {\em Local representation theory}, volume~11 of {\em Cambridge
Studies in Advanced Mathematics}.
\newblock Cambridge University Press, Cambridge, 1986.
\newblock Modular representations as an introduction to the local
representation theory of finite groups.
\bibitem{Bleher_Camacho_Holomorphic_differentials} \bibitem{Bleher_Camacho_Holomorphic_differentials}
F.~M. Bleher and N.~Camacho. F.~M. Bleher and N.~Camacho.
\newblock Holomorphic differentials of {K}lein four covers. \newblock Holomorphic differentials of {K}lein four covers.

Binary file not shown.

View File

@ -560,9 +560,20 @@ Let $X$ be a curve with an action of $G$ and write $Y := X/H$. For any $k[C]$-mo
is uniquely determined by the $k[C]$-structure of $T^1 M, \ldots, T^{p^n} M$. is uniquely determined by the $k[C]$-structure of $T^1 M, \ldots, T^{p^n} M$.
\end{Lemma} \end{Lemma}
\begin{proof} \begin{proof}
This is basically \cite[proof of Theorem~1.1]{Bleher_Chinburg_Kontogeorgis_Galois_structure}. We sketch the proof for reader's convenience. Recall that if $U$ is an indecomposable $k[G]$-module This is basically \cite[proof of Theorem~1.1]{Bleher_Chinburg_Kontogeorgis_Galois_structure}. We sketch the proof for reader's convenience.
then $U^{\sigma} := \ker(\sigma - 1)$ (the socle of $U$) is a one-dimensional Assume that $G$ is a finite group with a normal cyclic $p$-Sylow subgroup $H = \langle \sigma \rangle \cong \ZZ/p^n$. Let $C := G/H$.
$k[C]$-module. Thus it comes from a character $\chi_U \in \wh{C} := \Hom(C, \CC)$. Recall that if $U$ is an indecomposable $k[G]$-module
then $U^{\sigma} := \ker(\sigma - 1)$ (the socle of $U$) is an indecomposable
$k[C]$-module. It turns out that the map
%
\begin{align*}
\Indec(k[G]) \to \Indec(k[C]) \times \{ 1, \ldots, p^n \}\\
U \mapsto (U^{\sigma}, \frac{\dim_k U}{\dim_k U^{\sigma}})
\end{align*}
%
is a bijection (cf. \cite[p. 35--37, 42 -- 43]{Alperin_local_rep}). We write
$\mc V(M, i)$ for the $k[G]$-module corresponding to a pair $(M, i) \in \Indec(k[C]) \times \{ 1, \ldots, p^n \}$.
Thus it comes from a character $\chi_U \in \wh{C} := \Hom(C, \CC)$.
It turns out that the map It turns out that the map
% %
\[ \[
@ -672,7 +683,7 @@ Let $X$ be a curve with an action of $G$ and write $Y := X/H$. For any $k[C]$-mo
% %
\begin{align} \begin{align}
\mc T^1 \mc M &\cong T^1 \mc M \oplus T^2 \mc M \oplus (T^2 \mc M)^{\chi^{-1}} \oplus \ldots \oplus (T^2 \mc M)^{\chi^{-(p - 2)}} \label{eqn:decomposition_of_mc_T1}\\ \mc T^1 \mc M &\cong T^1 \mc M \oplus T^2 \mc M \oplus (T^2 \mc M)^{\chi^{-1}} \oplus \ldots \oplus (T^2 \mc M)^{\chi^{-(p - 2)}} \label{eqn:decomposition_of_mc_T1}\\
\mc T^i \mc M &\cong T^2 \mc M \oplus \ldots \oplus (T^2 \mc M)^{\chi^{-(p-1)}} \quad \textrm{ for } 2 \le i \le p^n - p^{n-1}. \label{eqn:decomposition_of_mc_Ti} \mc T^i \mc M &\cong T^2 \mc M \oplus \ldots \oplus (T^2 \mc M)^{\chi^{-(p-1)}} \quad \textrm{ for } 2 \le i \le p^{n-1}. ???? \label{eqn:decomposition_of_mc_Ti}
\end{align} \end{align}
% %
Thus, since by induction hypothesis $\mc T^i \mc M$ is determined by higher ramification data, Thus, since by induction hypothesis $\mc T^i \mc M$ is determined by higher ramification data,