irreducible -> indecomposable; ccorrect def of X''; Hasse Arf
This commit is contained in:
parent
1645131c0d
commit
3ef78ffca3
Binary file not shown.
@ -137,6 +137,9 @@ hyperref, bbm, mathtools, mathrsfs}
|
||||
The $k[G]$-module structure of $H^1_{dR}(X)$ is uniquely determined by the lower ramification groups and the fundamental characters of closed
|
||||
points $x$ of $X$ that are ramified in the cover $X \to X/G$.
|
||||
\end{mainthm}
|
||||
%
|
||||
Note that if $p > 2$ and the $p$-Sylow subgroup of $G$ is not cyclic, the structure
|
||||
of $H^1_{dR}(X)$ isn't determined uniquely by the ramification data, see \cite{??Garnek_indecomposables}.
|
||||
|
||||
\section{Cyclic covers}
|
||||
%
|
||||
@ -149,9 +152,11 @@ Let for any $\ZZ/p^n$-cover $X \to Y$
|
||||
%
|
||||
Note that if $G_P = \ZZ/p^n$, this coincides with the standard definition of
|
||||
the $t$th upper (resp. lower) ramification jump of $X \to Y$ at $P$.
|
||||
If $G_P = \ZZ/p^m$, then (??relation with usual jumps??). By Hasse--Arf theorem (cf. ???),
|
||||
the numbers $u_{X/Y, P}^{(t)}$ are integers.
|
||||
%
|
||||
\begin{Theorem} \label{thm:cyclic_de_rham}
|
||||
Suppose that $\pi : X \to Y$ is a $\ZZ/p^n$-cover. Let $\langle G_P : P \in X(k) \rangle = \ZZ/p^m = G_{P_0}$ for $P_0 \in X(k)$. Then, as $k[\ZZ/p^n]$-modules:
|
||||
Suppose that $\pi : X \to Y$ is a $\ZZ/p^n$-cover. Let $\langle G_P : P \in X(k) \rangle = \ZZ/p^m$. Pick arbitrary $P_0 \in X(k)$ such that $G_{P_0} \cong \ZZ/p^m$. Then, as $k[\ZZ/p^n]$-modules:
|
||||
%
|
||||
\[
|
||||
H^1_{dR}(X) \cong J_{p^n}^{2 (g_Y - 1)} \oplus J_{p^n - p^{n-m} + 1}^2 \oplus \bigoplus_{\substack{P \in X(k)\\ P \neq P_0}} J_{p^n - p^n/e_P}^2
|
||||
@ -171,7 +176,7 @@ For any $k[H]$-module $M$ denote:
|
||||
%
|
||||
Recall that $\dim_k T^i M$ determines the structure of $M$ completely (cf. ????).
|
||||
In the inductive step we use also the group $H' := \ZZ/p^{n-1}$. In this case
|
||||
we denote the irreducible $k[H']$-modules by $\mc J_1, \ldots, \mc J_{p^{n-1}}$
|
||||
we denote the indecomposable $k[H']$-modules by $\mc J_1, \ldots, \mc J_{p^{n-1}}$
|
||||
and $\mc T^i M := T^i_{H'} M$ for any $k[H']$-module $M$.\\
|
||||
Note also that for $j \ge 1$:
|
||||
%
|
||||
@ -260,8 +265,8 @@ We define $m_{\sigma - 1}$ as follows:
|
||||
m_{\sigma - 1}(\ol x) := (\sigma - 1) \cdot x,
|
||||
\]
|
||||
%
|
||||
where for $\ol x \in T^i M$ we picked any representative $x \in M^{(i)}$.
|
||||
Indeed, if $x \in M^{(i+1)} := \ker((\sigma - 1)^{i+1})$ then clearly $(\sigma - 1) x \in M^{(i)}$.
|
||||
where for $\ol x \in T^{i+1} M$ we picked any representative $x \in M^{(i+1)}$.
|
||||
Indeed, if $x \in M^{(i+1)}$ then clearly $(\sigma - 1) \cdot x \in M^{(i)}$.
|
||||
Moreover $(\sigma - 1) \cdot x \in M^{(i-1)}$ holds if and only if $x \in M^{(i)}$. This
|
||||
shows that $m_{\sigma - 1}$ is well-defined and injective.
|
||||
\end{proof}
|
||||
@ -275,7 +280,7 @@ shows that $m_{\sigma - 1}$ is well-defined and injective.
|
||||
\]
|
||||
\end{Lemma}
|
||||
\begin{proof}
|
||||
By Lemma~\ref{lem:TiM_isomorphism}:
|
||||
Note that $\mc T^i M = M^{(pi)}/M^{(pi - p)}$. This easily implies that:
|
||||
%
|
||||
\begin{align*}
|
||||
\dim_k \mc T^i M &= \dim_k T^{pi} M + \ldots + \dim_k T^{pi - p + 1} M\\
|
||||
@ -288,7 +293,7 @@ shows that $m_{\sigma - 1}$ is well-defined and injective.
|
||||
|
||||
\begin{proof}[Proof of Theorem~\ref{thm:cyclic_de_rham}]
|
||||
We use the following notation: $H' := \langle \sigma^p \rangle \cong \ZZ/p^{n-1}$,
|
||||
$H'' := H/\langle \sigma^{p^{n-1}} \rangle \cong \ZZ/p^{n-1}$, $Y' := X/H'$, $X'' := X/H''$.
|
||||
$H'' := H/\langle \sigma^{p^{n-1}} \rangle \cong \ZZ/p^{n-1}$, $Y' := X/H'$, $X'' := X/\langle \sigma^{p^{n-1}} \rangle$. Note that $H''$ naturally acts on $X''$.
|
||||
Write also $\mc M := H^1_{dR}(X)$.
|
||||
We consider now two cases. If the cover $X \to Y$ is \'{e}tale, then by induction assumption, since $2(g_{Y'} - 1) = p \cdot 2 \cdot (g_Y - 1)$:
|
||||
%
|
||||
@ -329,12 +334,13 @@ shows that $m_{\sigma - 1}$ is well-defined and injective.
|
||||
\oplus \bigoplus_{P \in X(k)} \bigoplus_{t = 0}^{n-2} \mc J_{p^n - p^t}^{u_{X/Y', P}^{(t+1)} - u_{X/Y', P}^{(t)}}
|
||||
\]
|
||||
%
|
||||
where $e'_P := e_{X/Y', P}$. Note that
|
||||
where $e'_P := e_{X/Y', P}$. Note that for any $P \in X(k)$:
|
||||
%
|
||||
\[
|
||||
??? p \cdot u^{(n)} = u^{(n-1)} + (p-1) \cdot l^{(1)} ???.
|
||||
p \cdot u^{(n)}_{X/Y, P} = u^{(n-1)}_{X/Y', P} + (p-1) \cdot l^{(1)}_{Y'/Y, Q},
|
||||
\]
|
||||
%
|
||||
where $Q$ denotes the image of~$P$ in~$Y'$.
|
||||
Therefore, for $i \le p^{n-1} - p^{n-2}$, using the Riemann--Hurwitz formula (cf. ????):
|
||||
%
|
||||
\begin{align*}
|
||||
@ -342,7 +348,7 @@ shows that $m_{\sigma - 1}$ is well-defined and injective.
|
||||
2(g_{Y'} - 1) + 2 + 2(\# R - 1) + \sum_{P \in X(k)} (u_{X/Y', P}^{(n-1)} - 1)\\
|
||||
&= 2 p (g_Y - 1) + \sum_{Q \in Y'(k)} (p-1) \cdot (l_{Y'/Y, Q}^{(1)} + 1)\\
|
||||
&+ 2 + 2(\# R - 1) + \sum_{P \in X(k)} (u_{X/Y', P}^{(n-1)} - 1)\\
|
||||
&= ?? p \cdot \left( 2(g_Y - 1) + 2 + 2(\# R - 1) + \sum_{P \in X(k)} (u_{X/Y, P}^{(n)} - 1) \right)
|
||||
&= p \cdot \left( 2(g_Y - 1) + 2 + 2(\# R - 1) + \sum_{P \in X(k)} (u_{X/Y, P}^{(n)} - 1) \right)
|
||||
\end{align*}
|
||||
%
|
||||
where
|
||||
|
Loading…
Reference in New Issue
Block a user