irreducible -> indecomposable; ccorrect def of X''; Hasse Arf

This commit is contained in:
jgarnek 2024-10-25 11:18:30 +02:00
parent 1645131c0d
commit 3ef78ffca3
2 changed files with 15 additions and 9 deletions

Binary file not shown.

View File

@ -137,6 +137,9 @@ hyperref, bbm, mathtools, mathrsfs}
The $k[G]$-module structure of $H^1_{dR}(X)$ is uniquely determined by the lower ramification groups and the fundamental characters of closed The $k[G]$-module structure of $H^1_{dR}(X)$ is uniquely determined by the lower ramification groups and the fundamental characters of closed
points $x$ of $X$ that are ramified in the cover $X \to X/G$. points $x$ of $X$ that are ramified in the cover $X \to X/G$.
\end{mainthm} \end{mainthm}
%
Note that if $p > 2$ and the $p$-Sylow subgroup of $G$ is not cyclic, the structure
of $H^1_{dR}(X)$ isn't determined uniquely by the ramification data, see \cite{??Garnek_indecomposables}.
\section{Cyclic covers} \section{Cyclic covers}
% %
@ -149,9 +152,11 @@ Let for any $\ZZ/p^n$-cover $X \to Y$
% %
Note that if $G_P = \ZZ/p^n$, this coincides with the standard definition of Note that if $G_P = \ZZ/p^n$, this coincides with the standard definition of
the $t$th upper (resp. lower) ramification jump of $X \to Y$ at $P$. the $t$th upper (resp. lower) ramification jump of $X \to Y$ at $P$.
If $G_P = \ZZ/p^m$, then (??relation with usual jumps??). By Hasse--Arf theorem (cf. ???),
the numbers $u_{X/Y, P}^{(t)}$ are integers.
% %
\begin{Theorem} \label{thm:cyclic_de_rham} \begin{Theorem} \label{thm:cyclic_de_rham}
Suppose that $\pi : X \to Y$ is a $\ZZ/p^n$-cover. Let $\langle G_P : P \in X(k) \rangle = \ZZ/p^m = G_{P_0}$ for $P_0 \in X(k)$. Then, as $k[\ZZ/p^n]$-modules: Suppose that $\pi : X \to Y$ is a $\ZZ/p^n$-cover. Let $\langle G_P : P \in X(k) \rangle = \ZZ/p^m$. Pick arbitrary $P_0 \in X(k)$ such that $G_{P_0} \cong \ZZ/p^m$. Then, as $k[\ZZ/p^n]$-modules:
% %
\[ \[
H^1_{dR}(X) \cong J_{p^n}^{2 (g_Y - 1)} \oplus J_{p^n - p^{n-m} + 1}^2 \oplus \bigoplus_{\substack{P \in X(k)\\ P \neq P_0}} J_{p^n - p^n/e_P}^2 H^1_{dR}(X) \cong J_{p^n}^{2 (g_Y - 1)} \oplus J_{p^n - p^{n-m} + 1}^2 \oplus \bigoplus_{\substack{P \in X(k)\\ P \neq P_0}} J_{p^n - p^n/e_P}^2
@ -171,7 +176,7 @@ For any $k[H]$-module $M$ denote:
% %
Recall that $\dim_k T^i M$ determines the structure of $M$ completely (cf. ????). Recall that $\dim_k T^i M$ determines the structure of $M$ completely (cf. ????).
In the inductive step we use also the group $H' := \ZZ/p^{n-1}$. In this case In the inductive step we use also the group $H' := \ZZ/p^{n-1}$. In this case
we denote the irreducible $k[H']$-modules by $\mc J_1, \ldots, \mc J_{p^{n-1}}$ we denote the indecomposable $k[H']$-modules by $\mc J_1, \ldots, \mc J_{p^{n-1}}$
and $\mc T^i M := T^i_{H'} M$ for any $k[H']$-module $M$.\\ and $\mc T^i M := T^i_{H'} M$ for any $k[H']$-module $M$.\\
Note also that for $j \ge 1$: Note also that for $j \ge 1$:
% %
@ -260,8 +265,8 @@ We define $m_{\sigma - 1}$ as follows:
m_{\sigma - 1}(\ol x) := (\sigma - 1) \cdot x, m_{\sigma - 1}(\ol x) := (\sigma - 1) \cdot x,
\] \]
% %
where for $\ol x \in T^i M$ we picked any representative $x \in M^{(i)}$. where for $\ol x \in T^{i+1} M$ we picked any representative $x \in M^{(i+1)}$.
Indeed, if $x \in M^{(i+1)} := \ker((\sigma - 1)^{i+1})$ then clearly $(\sigma - 1) x \in M^{(i)}$. Indeed, if $x \in M^{(i+1)}$ then clearly $(\sigma - 1) \cdot x \in M^{(i)}$.
Moreover $(\sigma - 1) \cdot x \in M^{(i-1)}$ holds if and only if $x \in M^{(i)}$. This Moreover $(\sigma - 1) \cdot x \in M^{(i-1)}$ holds if and only if $x \in M^{(i)}$. This
shows that $m_{\sigma - 1}$ is well-defined and injective. shows that $m_{\sigma - 1}$ is well-defined and injective.
\end{proof} \end{proof}
@ -275,7 +280,7 @@ shows that $m_{\sigma - 1}$ is well-defined and injective.
\] \]
\end{Lemma} \end{Lemma}
\begin{proof} \begin{proof}
By Lemma~\ref{lem:TiM_isomorphism}: Note that $\mc T^i M = M^{(pi)}/M^{(pi - p)}$. This easily implies that:
% %
\begin{align*} \begin{align*}
\dim_k \mc T^i M &= \dim_k T^{pi} M + \ldots + \dim_k T^{pi - p + 1} M\\ \dim_k \mc T^i M &= \dim_k T^{pi} M + \ldots + \dim_k T^{pi - p + 1} M\\
@ -288,7 +293,7 @@ shows that $m_{\sigma - 1}$ is well-defined and injective.
\begin{proof}[Proof of Theorem~\ref{thm:cyclic_de_rham}] \begin{proof}[Proof of Theorem~\ref{thm:cyclic_de_rham}]
We use the following notation: $H' := \langle \sigma^p \rangle \cong \ZZ/p^{n-1}$, We use the following notation: $H' := \langle \sigma^p \rangle \cong \ZZ/p^{n-1}$,
$H'' := H/\langle \sigma^{p^{n-1}} \rangle \cong \ZZ/p^{n-1}$, $Y' := X/H'$, $X'' := X/H''$. $H'' := H/\langle \sigma^{p^{n-1}} \rangle \cong \ZZ/p^{n-1}$, $Y' := X/H'$, $X'' := X/\langle \sigma^{p^{n-1}} \rangle$. Note that $H''$ naturally acts on $X''$.
Write also $\mc M := H^1_{dR}(X)$. Write also $\mc M := H^1_{dR}(X)$.
We consider now two cases. If the cover $X \to Y$ is \'{e}tale, then by induction assumption, since $2(g_{Y'} - 1) = p \cdot 2 \cdot (g_Y - 1)$: We consider now two cases. If the cover $X \to Y$ is \'{e}tale, then by induction assumption, since $2(g_{Y'} - 1) = p \cdot 2 \cdot (g_Y - 1)$:
% %
@ -329,12 +334,13 @@ shows that $m_{\sigma - 1}$ is well-defined and injective.
\oplus \bigoplus_{P \in X(k)} \bigoplus_{t = 0}^{n-2} \mc J_{p^n - p^t}^{u_{X/Y', P}^{(t+1)} - u_{X/Y', P}^{(t)}} \oplus \bigoplus_{P \in X(k)} \bigoplus_{t = 0}^{n-2} \mc J_{p^n - p^t}^{u_{X/Y', P}^{(t+1)} - u_{X/Y', P}^{(t)}}
\] \]
% %
where $e'_P := e_{X/Y', P}$. Note that where $e'_P := e_{X/Y', P}$. Note that for any $P \in X(k)$:
% %
\[ \[
??? p \cdot u^{(n)} = u^{(n-1)} + (p-1) \cdot l^{(1)} ???. p \cdot u^{(n)}_{X/Y, P} = u^{(n-1)}_{X/Y', P} + (p-1) \cdot l^{(1)}_{Y'/Y, Q},
\] \]
% %
where $Q$ denotes the image of~$P$ in~$Y'$.
Therefore, for $i \le p^{n-1} - p^{n-2}$, using the Riemann--Hurwitz formula (cf. ????): Therefore, for $i \le p^{n-1} - p^{n-2}$, using the Riemann--Hurwitz formula (cf. ????):
% %
\begin{align*} \begin{align*}
@ -342,7 +348,7 @@ shows that $m_{\sigma - 1}$ is well-defined and injective.
2(g_{Y'} - 1) + 2 + 2(\# R - 1) + \sum_{P \in X(k)} (u_{X/Y', P}^{(n-1)} - 1)\\ 2(g_{Y'} - 1) + 2 + 2(\# R - 1) + \sum_{P \in X(k)} (u_{X/Y', P}^{(n-1)} - 1)\\
&= 2 p (g_Y - 1) + \sum_{Q \in Y'(k)} (p-1) \cdot (l_{Y'/Y, Q}^{(1)} + 1)\\ &= 2 p (g_Y - 1) + \sum_{Q \in Y'(k)} (p-1) \cdot (l_{Y'/Y, Q}^{(1)} + 1)\\
&+ 2 + 2(\# R - 1) + \sum_{P \in X(k)} (u_{X/Y', P}^{(n-1)} - 1)\\ &+ 2 + 2(\# R - 1) + \sum_{P \in X(k)} (u_{X/Y', P}^{(n-1)} - 1)\\
&= ?? p \cdot \left( 2(g_Y - 1) + 2 + 2(\# R - 1) + \sum_{P \in X(k)} (u_{X/Y, P}^{(n)} - 1) \right) &= p \cdot \left( 2(g_Y - 1) + 2 + 2(\# R - 1) + \sum_{P \in X(k)} (u_{X/Y, P}^{(n)} - 1) \right)
\end{align*} \end{align*}
% %
where where