pf of Lemma p*(u-1) - two cases

This commit is contained in:
jgarnek 2024-11-14 23:43:38 +01:00
parent 394fa283bb
commit 51cf66a93e
2 changed files with 29 additions and 11 deletions

Binary file not shown.

View File

@ -145,9 +145,10 @@ of $H^1_{dR}(X)$ isn't determined uniquely by the ramification data, see \cite{?
\section{Cyclic covers}
%
\red{For any $\ZZ/p^n$-cover $\pi : X \to Y$ and $P \in X(k)$ write $u_{X/Y, P}^{(t)}$ (resp. $l_{X/Y, P}^{(t)}$) for the $t$th ramification jump at $P$.}
We use also the convention $u^{(0)}_{X/Y, P} = 1$ and $u^{(t)}_{X/Y, P} := u^{(m)}_{X/Y, P}$, if $p^t \ge |G_P| = p^m$.
We use also the convention $u^{(0)}_{X/Y, P} = 1$.
By Hasse--Arf theorem (cf. ???), the numbers $u_{X/Y, P}^{(t)}$ are integers. Define $n_{X/Y, P}$
by the equality $e_{X/Y, P} = p^{n_{X/Y, P}}$.
We abbreviate the last ramification jump to $u_{X/Y, P}$.
\red{For any $Q \in Y(k)$ we denote also $G_Q := G_P$, $e_{X/Y, Q} := e_{X/Y, P}$,
$u_{X/Y, Q}^{(t)} := u_{X/Y, P}^{(t)}$ etc. for arbitrary $P \in \pi^{-1}(Q)$.}
%
@ -156,7 +157,7 @@ $u_{X/Y, Q}^{(t)} := u_{X/Y, P}^{(t)}$ etc. for arbitrary $P \in \pi^{-1}(Q)$.}
%
\[
H^1_{dR}(X) \cong J_{p^n}^{2 (g_Y - 1)} \oplus J_{p^n - p^{n-m} + 1}^2 \oplus \bigoplus_{\red{\substack{Q \in Y(k)\\ Q \neq Q_0}}} J_{p^n - p^n/e_{\red{Q}}}^2
\oplus \bigoplus_{\red{Q \in Y(k)}} \bigoplus_{t \ge 0} J_{\red{p^n - p^{n+t}/e_Q}}^{u_Q^{(t+1)} - u_Q^{(t)}},
\oplus \bigoplus_{\red{Q \in Y(k)}} \bigoplus_{t = 0}^{n_{X/Y, P}} J_{\red{p^n - p^{n+t}/e_Q}}^{u_Q^{(t+1)} - u_Q^{(t)}},
\]
%
where $e_Q := e_{X/Y, Q}$ and $u_Q^{(t)} := u_{X/Y, Q}^{(t)}$.
@ -182,7 +183,8 @@ and $\mc T^i M := T^i_{H'} M$ for any $k[H']$-module $M$.\\
l_{X/Y, P}^{(t)} &= i_{X/Y, P}^{(0)} + i_{X/Y, P}^{(1)} \cdot p + \ldots + i_{X/Y, P}^{(t-1)} \cdot p^{t-1}.
\end{align*}
%
Moreover, if $X' \to Y$ is the $\ZZ/p^N$-subcover of $X \to Y$ for $N \le n$ and $P'$ is the image of $P \in X(k)$ on $X'$ then:
Assume now that $X' \to Y$ is the $\ZZ/p^N$-subcover of $X \to Y$ for $N \le n$. Let $P' \in X'(k)$ be the image of $P \in X(k)$. Then, if
$e_{X/Y, P} = p^n$, we have:
%
\begin{align*}
i_{X/X', P}^{(t)} &=
@ -192,6 +194,8 @@ Moreover, if $X' \to Y$ is the $\ZZ/p^N$-subcover of $X \to Y$ for $N \le n$ and
\end{cases}\\
i_{X'/Y, P'}^{(t)} &= i_{X/Y, P}^{(t)} \qquad \textrm{ for } t < N.
\end{align*}
If $e_{X/Y, P} \le p^{n - N}$ then $i_{X/Y, P}^{(t)} = i_{X/X', P}^{(t)}$
for all $t$.
}
%
\begin{Lemma} \label{lem:G_invariants_\'{e}tale}
@ -318,16 +322,30 @@ shows that $m_{\sigma - 1}$ is well-defined and injective.
\end{proof}
%
\begin{Lemma} \label{lem:u_equals_ul}
Assume that $Y' \to Y$ is a $\ZZ/p$-subcover of $X \to Y$.
For any $Q \in Y(k)$:
%
\[
p \cdot (u^{(n_Q)}_{X/Y, Q} - 1) = \sum_{Q'} \left( (u^{(n_{Q'})}_{X/Y', Q'} - 1) + (p-1) \cdot (l^{(1)}_{Y'/Y, Q'} + 1) \right),
p \cdot (u_{X/Y, Q} - 1) = \sum_{Q'} \left( (u_{X/Y', Q'} - 1) + (p-1) \cdot (l^{(1)}_{Y'/Y, Q'} + 1) \right),
\]
%
where we sum over points $Q' \in Y'(k)$ lying above $Q$ and $n_Q := n_{X/Y, Q}$, $n_{Q'} := n_{X/Y', Q'}$.
where we sum over points $Q' \in Y'(k)$ lying above $Q$.
\end{Lemma}
\begin{proof}
????
%
Consider the following two cases. If $e_{Y'/Y, Q} = 1$ then
$l^{(1)}_{Y'/Y, Q} = - 1$ and $u_{X/Y, Q} = u_{X/Y', Q'}$ for all $p$ points $Q' \in Y'(k)$ in the preimage of $Q$. This easily implies the desired equality.\\
If $e_{Y'/Y, Q} = 1$, then there exists a unique point $Q' \in Y'(k)$
in the preimage of $Q$ through $Y' \to Y$. Moreover, $n_{X/Y, Q} = n_{X/Y', Q'}$. By using ????above formulas???:
%
\begin{align*}
p \cdot (u_{X/Y, Q} - 1) &=
p \cdot (i^{(0)}_{X/Y, Q} + \ldots + i^{(n_Q - 1)}_{X/Y, Q} - 1)\\
&= (p-1) \cdot (i^{(0)}_{X/Y, Q} + 1) + \left( (i^{(0)}_{X/Y, Q} + p \cdot i^{(1)}) + p \cdot (i^{(2)}_{X/Y, Q} + i^{(3)}_{X/Y, Q} + \ldots) - 1 \right)\\
&= (p-1) \cdot (l^{(1)}_{X/Y, Q} + 1) + (i^{(0)}_{X/Y', Q'} + i^{(1)}_{X/Y', Q'} + \ldots - 1)\\
&= (p-1) \cdot (l^{(1)}_{X/Y, Q} + 1) + u_{X/Y', Q'} - 1.
\end{align*}
%
\end{proof}
\begin{proof}[Proof of Theorem~\ref{thm:cyclic_de_rham}]
@ -377,10 +395,10 @@ shows that $m_{\sigma - 1}$ is well-defined and injective.
%
\begin{align*}
\dim_k \mc T^i \mc M &=
2(g_{Y'} - 1) + 2 + 2(\# R - 1) + \sum_{Q' \in Y'(k)} (u_{X/Y', Q'}^{(n_{Q'})} - 1)\\
2(g_{Y'} - 1) + 2 + 2(\# R - 1) + \sum_{Q' \in Y'(k)} (u_{X/Y', Q'} - 1)\\
&= 2 p (g_Y - 1) + \sum_{Q' \in Y'(k)} (p-1) \cdot (l_{Y'/Y, Q'}^{(1)} + 1)\\
&+ 2 + 2(\# R - 1) + \sum_{Q' \in Y'(k)} (u_{X/Y', Q'}^{(n_{Q'})} - 1)\\
&= p \cdot \left( 2(g_Y - 1) + 2 + 2(\# R - 1) + \sum_{Q' \in Y(k)} (u_{X/Y, Q'}^{(n_Q)} - 1) \right)
&+ 2 + 2(\# R - 1) + \sum_{Q' \in Y'(k)} (u_{X/Y', Q'} - 1)\\
&= p \cdot \left( 2(g_Y - 1) + 2 + 2(\# R - 1) + \sum_{Q' \in Y(k)} (u_{X/Y, Q'} - 1) \right)
\end{align*}
%
where
@ -392,7 +410,7 @@ shows that $m_{\sigma - 1}$ is well-defined and injective.
%
\begin{align*}
\dim_k T^1 \mc M &= \ldots = \dim_k T^{p^n - p^{n-1}} \mc M = \frac{1}{p} \dim_k \mc T^1 \mc M\\
&= 2(g_Y - 1) + 2 + 2(\# R - 1) + \sum_{Q \in Y(k)} (u_{X/Y, P}^{(n_Q)} - 1).
&= 2(g_Y - 1) + 2 + 2(\# R - 1) + \sum_{Q \in Y(k)} (u_{X/Y, P} - 1).
\end{align*}
%
By Lemma~\ref{lem:trace_surjective} since $X \to X''$ is not \'{e}tale, the map $\tr_{X/X''} : H^1_{dR}(X) \to H^1_{dR}(X'')$ is surjective. Recall that
@ -415,7 +433,7 @@ shows that $m_{\sigma - 1}$ is well-defined and injective.
\ker(\tr_{X/X''} : \mc M \to \mc M'') = \mc M^{(p^n - p^{n-1})}
\]
%
and that $\tr_{X/X''}$ induces a $k$-linear isomorphism $T^{i + p^n - p^{n-1}} \mc M \to \mc T^i \mc M''$ for any $i \ge 1$. Thus:
and that $\tr_{X/X''}$ induces a $k$-linear isomorphism $T^{i + p^n - p^{n-1}} \mc M \to \mc T^i \mc M''$ for any $i \ge 1$. Thus, if $i \in [p^{n-1} - p^k, p^{n-1} - p^{k-1}]$:
%
\[
\dim_k T^{i + p^n - p^{n-1}} \mc M = \dim_k \mc T^i \mc M'' = ....