Lemma mc T = mc T --> T = T
This commit is contained in:
parent
c44ac3b620
commit
6498584b31
Binary file not shown.
@ -154,12 +154,14 @@ the $t$th upper (resp. lower) ramification jump of $X \to Y$ at $P$.
|
||||
Suppose that $\pi : X \to Y$ is a $\ZZ/p^n$-cover. Let $\langle G_P : P \in X(k) \rangle = \ZZ/p^m = G_{P_0}$ for $P_0 \in X(k)$. Then, as $k[\ZZ/p^n]$-modules:
|
||||
%
|
||||
\[
|
||||
H^1_{dR}(X) \cong J_{p^n}^{2 (g_Y - 1)} \oplus J_{p^n - p^{n-m} + 1}^2 \oplus \bigoplus_{P \neq P_0} J_{p^n - \frac{p^n}{e_{X/Y, P}}}^2
|
||||
\oplus \bigoplus_P \bigoplus_{t = 0}^{n-1} J_{p^n - p^t}^{u_{X/Y, P}^{(t+1)} - u_{X/Y, P}^{(t)}}.
|
||||
H^1_{dR}(X) \cong J_{p^n}^{2 (g_Y - 1)} \oplus J_{p^n - p^{n-m} + 1}^2 \oplus \bigoplus_{P \neq P_0} J_{p^n - p^n/e_P}^2
|
||||
\oplus \bigoplus_P \bigoplus_{t = 0}^{n-1} J_{p^n - p^t}^{u_{P}^{(t+1)} - u_{P}^{(t)}},
|
||||
\]
|
||||
%
|
||||
where $e_P := e_{X/Y, P}$ and $u_P^{(t)} := u_{X/Y, P}^{(t)}$.
|
||||
\end{Theorem}
|
||||
%
|
||||
Write $H := \ZZ/p^n = \langle \sigma \rangle$.
|
||||
Write $H := \langle \sigma \rangle \cong \ZZ/p^n$.
|
||||
For any $k[H]$-module $M$ denote:
|
||||
%
|
||||
\begin{align*}
|
||||
@ -168,9 +170,9 @@ For any $k[H]$-module $M$ denote:
|
||||
\end{align*}
|
||||
%
|
||||
Recall that $\dim_k T^i M$ determines the structure of $M$ completely (cf. ????).
|
||||
In the inductive step we use also the group $\ZZ/p^{n-1}$. In this case
|
||||
we denote the irreducible $k[\ZZ/p^{n-1}]$-modules by $\mc J_1, \ldots, \mc J_{p^{n-1}}$
|
||||
and $\mc T^i M := T^i_{\ZZ/p^{n-1}} M$ for any $k[\ZZ/p^{n-1}]$-module $M$.
|
||||
In the inductive step we use also the group $H' := \ZZ/p^{n-1}$. In this case
|
||||
we denote the irreducible $k[H']$-modules by $\mc J_1, \ldots, \mc J_{p^{n-1}}$
|
||||
and $\mc T^i M := T^i_{H'} M$ for any $k[H']$-module $M$.
|
||||
|
||||
Note also that for $j \ge 1$:
|
||||
%
|
||||
@ -187,7 +189,7 @@ Note also that for $j \ge 1$:
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\begin{Lemma} \label{lem:G_invariants_etale}
|
||||
\begin{Lemma} \label{lem:G_invariants_\'{e}tale}
|
||||
If the $G$-cover $X \to Y$ is \'{e}tale, then the natural map
|
||||
%
|
||||
\[
|
||||
@ -224,31 +226,72 @@ Note also that for $j \ge 1$:
|
||||
|
||||
\end{proof}
|
||||
%
|
||||
\begin{Lemma}
|
||||
Let $M$ be a $k[H]$-module. Let $T^i M$ be as above and
|
||||
$\mc T^i M := T^i_{H'} M$ for $H' \le H$, $H' \cong \ZZ/p^{n-1}$.
|
||||
If $\mc T^i M \cong \mc T^{i+1} M$ for some $i$ then:
|
||||
\begin{Lemma} \label{lem:lemma_mcT_and_T}
|
||||
Let $M$ be a $k[H]$-module. Let $T^i M$ and $\mc T^i M$ be as above.
|
||||
If $\dim_k \mc T^i M = \dim_k \mc T^{i+1} M$ for some $i$ then:
|
||||
%
|
||||
\[
|
||||
T^{pi + p} M \cong T^{pi + p - 1} M \cong \ldots \cong T^{pi - p + 1} M.
|
||||
\dim_k T^{pi + p} M = \dim_k T^{pi + p - 1} M = \ldots = \dim_k T^{pi - p + 1} M.
|
||||
\]
|
||||
\end{Lemma}
|
||||
\begin{proof}
|
||||
??
|
||||
By Lemma~\ref{lem:TiM_isomorphism}:
|
||||
%
|
||||
\begin{align*}
|
||||
\dim_k \mc T^i M &= \dim_k T^{pi} M + \ldots + \dim_k T^{pi - p + 1} M\\
|
||||
&\ge \dim_k T^{p^n - p^{n-1}} M + \ldots + \dim_k T^{p^n - p^{n-1}} M
|
||||
= \dim_k \mc T^{p^{n-1} - p^{n-2}} M.
|
||||
\end{align*}
|
||||
%
|
||||
Since the left-hand side and right hand side are equal, we conclude by Lemma~\ref{lem:TiM_isomorphism}
|
||||
\end{proof}
|
||||
|
||||
\begin{proof}[Proof of Theorem~\ref{thm:cyclic_de_rham}]
|
||||
We use the following notation: $H' := \langle \sigma^p \rangle \cong \ZZ/p^{n-1}$,
|
||||
$H'' := H/\langle \sigma^{p^{n-1}} \rangle \cong \ZZ/p^{n-1}$, $Y' := X/H'$, $X'' := X/H''$.
|
||||
Write also $\mc M := H^1_{dR}(X)$.
|
||||
We consider now two cases. If the cover $X \to Y$ is \'{e}tale, then by Lemma~\ref{lem:G_invariants_\'{e}tale} we have
|
||||
%
|
||||
\[
|
||||
\dim_k T^1 \mc M = 2 g_Y
|
||||
\]
|
||||
%
|
||||
Moreover, by induction assumption, since $2(g_{Y'} - 1) = p \cdot 2 \cdot (g_Y - 1)$:
|
||||
%
|
||||
\[
|
||||
\mc M \cong \mc J_{p^{n-1}}^{2 p \cdot (g_Y - 1)} \oplus k^{\oplus 2}.
|
||||
\]
|
||||
%
|
||||
Therefore $\dim_k \mc T^2 \mc M = \ldots = \dim_k \mc T^{p^{n-1}} \mc M = 2 p (g_Y - 1)$,
|
||||
which implies that
|
||||
%
|
||||
\[
|
||||
\dim_k T^p \mc M = \ldots = \dim_k T^{p^n} \mc M = 2(g_Y - 1).
|
||||
\]
|
||||
%
|
||||
by Lemma~\ref{lem:lemma_mcT_and_T}. Thus, for $i = 2, \ldots, p$:
|
||||
%
|
||||
\[
|
||||
\dim_k T^i \mc M \ge 2(g_Y - 1) = \dim_k T^{p+1} \mc M
|
||||
\]
|
||||
%
|
||||
On the other hand:
|
||||
%
|
||||
\begin{align*}
|
||||
\sum_{i = 2}^p \dim_k T^i \mc M = 2g_X - \dim_k T^1 \mc M - \sum_{i = p+1}^{p^n} \dim_k T^i \mc M = (p-1) \cdot 2(g_Y - 1).
|
||||
\end{align*}
|
||||
%
|
||||
Thus $\dim_k T^i \mc M = 2(g_Y - 1)$ for every $i \ge 2$, which ends the proof in this case.
|
||||
|
||||
Assume now that $X \to Y$ is not \'{e}tale. Therefore $X \to X''$ is also not \'{e}tale.
|
||||
By induction hypothesis for $H'$ acting on $X$, we have the following isomorphism of $k[H']$-modules:
|
||||
%
|
||||
\[
|
||||
\mc M \cong \mc J_{p^{n-1}}^{2 (g_{Y'} - 1)} \oplus \mc J_{p^{n-1} - p^{n - 1 -m'} + 1}^2 \oplus \bigoplus_{P \neq P_0} \mc J_{p^n - \frac{p^{n-1}}{e_{X/Y', P}}}^2
|
||||
\mc M \cong \mc J_{p^{n-1}}^{2 (g_{Y'} - 1)} \oplus \mc J_{p^{n-1} - p^{n - 1 -m'} + 1}^2 \oplus \bigoplus_{P \neq P_0} \mc J_{p^{n-1} - p^{n-1}/e'_P}^2
|
||||
\oplus \bigoplus_P \bigoplus_{t = 0}^{n-1} \mc J_{p^n - p^t}^{u_{X/Y', P}^{(t+1)} - u_{X/Y', P}^{(t)}}
|
||||
\]
|
||||
%
|
||||
where
|
||||
where $e'_P := e_{X/Y', P}$ and
|
||||
%
|
||||
\[
|
||||
m' :=
|
||||
@ -257,7 +300,7 @@ Note also that for $j \ge 1$:
|
||||
m, & \textrm{ otherwise.}
|
||||
\end{cases}
|
||||
\]
|
||||
|
||||
%
|
||||
Therefore, for $i \le p^n - p^{n-1}$
|
||||
%
|
||||
\begin{align*}
|
||||
@ -268,30 +311,20 @@ Note also that for $j \ge 1$:
|
||||
\end{align*}
|
||||
%
|
||||
In particular, $\dim_k \mc T^1 \mc M = \ldots = \dim_k \mc T^{p^{n-1} - p^{n-2}} \mc M$.
|
||||
On the other hand, by Lemma~\ref{lem:TiM_isomorphism}:
|
||||
%
|
||||
\begin{align*}
|
||||
\dim_k \mc T^1 \mc M &= \dim_k T^1 \mc M + \ldots + \dim_k T^p \mc M\\
|
||||
&\ge \dim_k T^{p^n - p^{n-1}} \mc M + \ldots + \dim_k T^{p^n - p^{n-1}} \mc M
|
||||
= \dim_k \mc T^{p^{n-1} - p^{n-2}} \mc M.
|
||||
\end{align*}
|
||||
%
|
||||
Since the left-hand side and right hand side are equal, we conclude by Lemma~\ref{lem:TiM_isomorphism}
|
||||
that
|
||||
Thus by Lemma~\ref{lem:lemma_mcT_and_T}
|
||||
%
|
||||
\[
|
||||
\dim_k T^1 \mc M = \ldots = \dim_k T^{p^n - p^{n-1}} \mc M = \frac{1}{p} \dim_k \mc T^1 \mc M.
|
||||
\]
|
||||
%
|
||||
We consider now two cases. If the cover $X \to Y$ is \'{e}tale, then by Lemma~\ref{lem:G_invariants_etale} we have
|
||||
By Lemma~\ref{lem:trace_surjective} since $X \to X''$ is not \'{e}tale, the map $\tr_{X/X''} : H^1_{dR}(X) \to H^1_{dR}(X'')$ is surjective. Recall that
|
||||
in $\FF_p[x]$ we have the identity:
|
||||
%
|
||||
\[
|
||||
\dim_k T^1 \mc M = 2 g_{X''}
|
||||
1 + x + \ldots + x^{p-1} = (x - 1)^{p-1}.
|
||||
\]
|
||||
|
||||
then the cover $X \to Y$ must be also \'{e}tale.
|
||||
Thus the proof follows in this case by~\cite{Nakajima??Inventiones}. Suppose now that
|
||||
$X \to X''$ is not \'{e}tale. Then, by Lemma~\ref{lem:trace_surjective}, the map $\tr_{X/X''} : H^1_{dR}(X) \to H^1_{dR}(X'')$ is surjective. Moreover, note that in the group ring $k[H]$ we have:
|
||||
%
|
||||
Therefore in the group ring $k[H]$ we have:
|
||||
%
|
||||
\[
|
||||
\tr_{X/X''} = \sum_{j = 0}^{p-1} (\sigma^{p^{n-1}})^j = (\sigma^{p^{n-1}} - 1)^{p-1} =
|
||||
@ -304,7 +337,7 @@ Note also that for $j \ge 1$:
|
||||
\ker(\tr_{X/X''} : \mc M \to \mc M'') = \mc M^{(p^n - p^{n-1})}
|
||||
\]
|
||||
%
|
||||
and that $\tr_{X/X''}$ induces a $k$-linear isomorphism $T^{i + p^n - p^{n-1}} M \to \mc T^i M''$ for any $i \ge 1$. Thus:
|
||||
and that $\tr_{X/X''}$ induces a $k$-linear isomorphism $T^{i + p^n - p^{n-1}} \mc M \to \mc T^i \mc M''$ for any $i \ge 1$. Thus:
|
||||
%
|
||||
\[
|
||||
\dim_k T^{i + p^n - p^{n-1}} \mc M = \dim_k \mc T^i \mc M'' = ....
|
||||
@ -315,7 +348,7 @@ Note also that for $j \ge 1$:
|
||||
|
||||
\section{Hypoelementary covers}
|
||||
%
|
||||
Assume now that $G = H \rtimes_{\chi} \ZZ/c$.
|
||||
Assume now that $G = H \rtimes_{\chi} C = \langle \sigma \rangle \rtimes_{\chi} \langle \rho \rangle \cong \ZZ/p^n \rtimes_{\chi} \ZZ/c$.
|
||||
%
|
||||
\begin{Proposition} \label{prop:main_thm_for_hypoelementary}
|
||||
Main Theorem holds for a hypoelementary $G$ as above and $k = \ol k$.
|
||||
@ -377,7 +410,7 @@ Assume now that $G = H \rtimes_{\chi} \ZZ/c$.
|
||||
is an isomorphism of $k$-vector spaces between $T^{i+1} \mc M$ and $T^i \mc M$ for
|
||||
$i = 2, \ldots, p^n$. This yields an isomorphism of $k[C]$-modules for $i \ge 2$:
|
||||
%
|
||||
\begin{equation} \label{eqn:TiM=T1M_chi_etale}
|
||||
\begin{equation} \label{eqn:TiM=T1M_chi_\'{e}tale}
|
||||
T^i \mc M \cong (T^2 \mc M)^{\chi^{-i+2}}
|
||||
\end{equation}
|
||||
%
|
||||
@ -394,10 +427,10 @@ Assume now that $G = H \rtimes_{\chi} \ZZ/c$.
|
||||
%
|
||||
Thus, since by induction hypothesis $\mc T^i \mc M$ is determined by ramification data,
|
||||
we have by Lemma~\ref{lem:N+Nchi+...} that $T^2 \mc M$ is determined by ramification data.
|
||||
Moreover, by Lemma~\ref{lem:G_invariants_etale}, $T^1 \mc M \cong H^1_{dR}(X'')$
|
||||
Moreover, by Lemma~\ref{lem:G_invariants_\'{e}tale}, $T^1 \mc M \cong H^1_{dR}(X'')$
|
||||
is also determined by ramification data (???).
|
||||
|
||||
Assume now that $X \to Y$ is not etale. Analogously as in the previous case, Lemma~\ref{lem:TiM_isomorphism_hypoelementary} and proof of Theorem~\ref{thm:cyclic_de_rham}
|
||||
Assume now that $X \to Y$ is not \'{e}tale. Analogously as in the previous case, Lemma~\ref{lem:TiM_isomorphism_hypoelementary} and proof of Theorem~\ref{thm:cyclic_de_rham}
|
||||
yield an isomorphism of $k[C]$-modules:
|
||||
%
|
||||
\begin{equation} \label{eqn:TiM=T1M_chi}
|
||||
|
Loading…
Reference in New Issue
Block a user