diff --git a/article_de_rham_cyclic.synctex.gz b/article_de_rham_cyclic.synctex.gz index 554d79d..b609944 100644 Binary files a/article_de_rham_cyclic.synctex.gz and b/article_de_rham_cyclic.synctex.gz differ diff --git a/article_de_rham_cyclic.tex b/article_de_rham_cyclic.tex index 4aacecf..d2e9f7d 100644 --- a/article_de_rham_cyclic.tex +++ b/article_de_rham_cyclic.tex @@ -194,8 +194,9 @@ By Hasse--Arf theorem (cf. \cite[p. 76]{Serre1979}), } if the $p$-Sylow subgroup of $G$ is abelian, the numbers $u_{X/Y, P}^{(t)}$ are integers. -For any $Q \in Y(\ol k)$ we denote also by abuse of notation $G_Q := G_P$, $e_{X/Y, Q} := e_{X/Y, P}$, -$u_{X/Y, Q}^{(t)} := u_{X/Y, P}^{(t)}$ etc. for arbitrary $P \in \pi^{-1}(Q)$. +For any $Q \in Y(\ol k)$ we denote also by abuse of notation $e_{X/Y, Q} := e_{X/Y, P}$, +$u_{X/Y, Q}^{(t)} := u_{X/Y, P}^{(t)}$, $G_Q := G_P$, etc. for arbitrary $P \in \pi^{-1}(Q)$. +Note that $G_Q$ is well-defined only up to conjugacy. Let % \[ @@ -259,6 +260,12 @@ Finally, we recall the classical Chevalley-Weil formula. For any $e \in \NN$, de \end{align*} % \end{Corollary} +% +\begin{Remark} + ??? Note that if $H$ and $H'$ are conjugated subgroups of $G$ then $\dim_k W^H = \dim_k W^{H'}$. Thus the sum + in Corollary ??? is well-defined. +\end{Remark} +% \begin{proof} Note that the category of $k[C]$-modules is semisimple. Hence, by the Hodge--de Rham exact sequence (??recall it earlier??) and Serre's duality (cf. ????): % @@ -857,17 +864,17 @@ $a_W'$ is as in the equality~\eqref{eqn:cw} for the action of $C$ on $Y := X/H$ for some $A_W, B_W \in \ZZ$. ?? \end{proof} % -Let $p > 2$ be a prime and $p \nmid m$ an natural number. Fix a root of unity $\zeta \in \ol{\FF}_p^{\times}$ of order $m \cdot (p-1)$. +Let $p > 2$ be a prime and $p \nmid m$ an natural number. Fix a primitive root of unity $\zeta \in \ol{\FF}_p^{\times}$ of order $m \cdot (p-1)$. Note that $\zeta^m \in \FF_p$. We compute now the equivariant structure of the de Rham cohomology for the superelliptic curve $X$ with the affine part given by: % \begin{equation*} - y^m = x^{p^m} - x. + y^m = x^{p^n} - x. \end{equation*} % -Note that for $m = 2$ this curve was considered e.g. in \cite[Section~4]{Bleher_Wood_polydiffs_structure}. -It is a curve of genus $\frac 12 (p^2 - 1) (m-1)$ with an action of the group $G := H \rtimes_{\chi} C$, -where $H := \langle \sigma \rangle \cong \ZZ/p$, $C := \langle \rho \rangle \cong \ZZ/(m \cdot p - m)$ and +Note that for $m = n = 2$ this curve was considered e.g. in \cite[Section~4]{Bleher_Wood_polydiffs_structure}. +It is a curve of genus $\frac 12 (p^n - 1) (m-1)$ with an action of the group $G := H \rtimes_{\chi} C$, +where $H := \langle \sigma \rangle \cong \ZZ/p$, $C := \langle \rho \rangle \cong \ZZ/(m \cdot (p - 1))$ and % \[ \chi : C \to H, \quad \rho \mapsto \sigma^{\zeta^m}. @@ -880,47 +887,26 @@ This action is given by: \rho(x, y) &= (\zeta^m \cdot x, \zeta \cdot y). \end{align*} % -Recall representation theory of $D_{2(p - 1)}$ (cf. \cite[Example~8.2.3]{Steinberg_Representation_book}). -For $1 \le j \le p-2$ let $\chi_j$ be the character of the representation of $D_{2(p-1)}$ -induced from +Note that $X/G \cong \PP^1$ and the quotient map is given by $(x, y) \mapsto (x^p - x)^{p-1}$. Indeed, ????. +We claim that the set of branch points is given by $B := \{ 0, \infty \} \cup B'$, where % \[ -\ZZ/(p-1) = \langle \theta \rangle \to \FF_p^{\times}, \quad \theta \mapsto \zeta^j. + B' := \{ (\alpha^p - \alpha)^{p-1} : \alpha \in \FF_{p^n} \setminus \FF_p \}. \] % -One easily checks that $\chi_j$ is given by the matrices: +The set $B'$ has $\frac{p^{n-1} - 1}{p - 1}$ elements. We claim that: % -\begin{align*} - \theta \mapsto - \left( - \begin{matrix} - \zeta^j & 0\\ - 0 & \zeta^{-j} - \end{matrix} - \right), - \qquad - s \mapsto - \left( - \begin{matrix} - 0 & 1\\ - 1 & 0 - \end{matrix} - \right). -\end{align*} +\begin{itemize} + \item $G_{Q_0} = C$, + + \item $G_Q = \langle \rho^{p-1} \rangle \cong \ZZ/m$ for $Q \in B'$, + + \item $G_{Q_{\infty}} = G$ and the lower ramification jump at $Q_{\infty}$ equals $m$. +\end{itemize} % -Moreover, $\chi_j$ is irreducible and isomorphic to $\chi_{p - 1 - j}$. -Let also $\chi_0$ be the representation: -% -\[ -D_{2(p-1)} \to \FF_p^{\times}, \qquad \theta \mapsto 1, \qquad -s \mapsto -1. -\] -% -We claim that as $k[C]$-modules: ??k or $\FF_p$?? -% -\begin{equation} - H^1_{dR}(X) \cong ????. -\end{equation} +Indeed, ????. + + %