diff --git a/article_de_rham_cyclic.synctex.gz b/article_de_rham_cyclic.synctex.gz index 16ace2c..96be47c 100644 Binary files a/article_de_rham_cyclic.synctex.gz and b/article_de_rham_cyclic.synctex.gz differ diff --git a/article_de_rham_cyclic.tex b/article_de_rham_cyclic.tex index f7598a7..81b6c59 100644 --- a/article_de_rham_cyclic.tex +++ b/article_de_rham_cyclic.tex @@ -233,6 +233,7 @@ $\mc V(M, i)$ for the $k[G]$-module corresponding to a pair $(M, i) \in \Indec(k Finally, we recall the classical Chevalley-Weil formula. For any $e \in \NN$, denote by $\chi_e$ the primitive character of a cyclic group of order $e$. % +{\color{red} \begin{Proposition} \label{prop:chevalley_weil} Keep the above notation and assume that $p \nmid \# G$. Then: % @@ -255,13 +256,8 @@ Finally, we recall the classical Chevalley-Weil formula. For any $e \in \NN$, de H^1_{dR}(X) \cong k[G]^{\oplus 2g_X - 2} \oplus k^{\oplus 2}. \end{equation} % - where: - % - \begin{align*} - a_W^{dR} := 2 (g_Y - 1) \cdot \dim_k W + \sum_{Q \in Y(k)} (e_{X/Y, Q} - 1) \cdot \dim_k W + 2 \cdot \llbracket W \cong k \rrbracket, - \end{align*} \end{Corollary} - +} \section{Cyclic covers} %