usual definition of ramification jumps

This commit is contained in:
jgarnek 2024-11-04 20:37:23 +01:00
parent e8d013b3f5
commit 8dbff45e8a

492
ramification.tex Normal file
View File

@ -0,0 +1,492 @@
\documentclass[10pt]{amsart}
\usepackage{calrsfs}
\usepackage{amsmath,tikz}
\usetikzlibrary{tikzmark,fit}
\newcommand\bigzero{\makebox(0,0){\text{\huge0}}}
\usepackage[greek,english]{babel}
% \usepackage[iso-8859-7]{inputenc}
\usepackage{graphicx}
%\usepackage{hyperref}
\usepackage{amsthm}
\usepackage{amssymb}
\usepackage{multirow}
\usepackage{tikz-cd}
\usepackage{amsmath}
\usepackage{todonotes}
\usepackage{amsbsy}
\usepackage[all]{xy}
\usepackage{qtree}
% \usepackage{comment}
\usepackage{enumitem}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{xfrac}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{color, colortbl}
\definecolor{LightCyan}{rgb}{0.88,1,1}
\definecolor{Gray}{gray}{0.9}
\usepackage{faktor}
\usepackage{changes}
\definechangesauthor[color=orange,name={Aristidesd Kontogeorgis}]{AK}
\definechangesauthor[color=blue,name={Alex Terezakis}]{AT}
\usepackage{longtable,booktabs}
\usepackage{float} %gia to figure[H] na mpainei to figure ekei pou prepei
% \usepackage[linenumbers]{MagmaTeX}
%\magmanames(depthFirstSearch,nodeVisitor,strongComponents,acyclicQuotient,transitiveQuotient)
%\setlength\textwidth{14cm}
% \setlength\textwidth{15cm} \setlength\topmargin{0pt}
% \addtolength\topmargin{-\headheight}
% \addtolength\topmargin{-\headsep}
% \setlength\textheight{8.9in}
% \setlength\oddsidemargin{0pt} \setlength\evensidemargin{0pt}
% \setlength\marginparwidth{0.5in}
%\setlength\textwidth{5.5in}
%d
% \newtheorem{proposition}{Proposition}
% % \numberwithin{proposition}{subsection}
% \numberwithin{proposition}
% \newtheorem{lemma}{Lemma}
% \numberwithin{lemma}{subsection}
% \newtheorem{example}{Example}
% \numberwithin{example}{subsection}
% \newtheorem{definition}{Definition}
% \numberwithin{definition}{subsection}
% \newtheorem{exercise}{Exercise}
% \numberwithin{exercise}{subsection}
% \newtheorem{corollary}{Corollary}
% \numberwithin{corollary}{subsection}
% \newtheorem{comments}{Comments}
% \numberwithin{comments}{subsection}
% \newtheorem{examples}{Examples}
% \numberwithin{examples}{subsection}
% \newtheorem{theorem}{Theorem}
% \numberwithin{theorem}{subsection}
% \newtheorem{problem}{Problem}
% \numberwithin{problem}{subsection}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{proposition}[theorem]{Proposition}
\theoremstyle{definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{convention}[theorem]{Convention}
\newtheorem{problem}{Problem}
\newcommand{\Ker}{\mathrm Ker}
\newcommand{\adj}{\mathrm adj}
\newcommand{\nullspace}{\mathrm Null}
\newcommand{\la}{\latintext}
\newcommand{\slg}{\selectlanguage{greek}}
\renewcommand{\Im}{\mathrm Im}
\newcommand{\Char}{\mathrm char}
\newcommand{\Diff}{\mathrm Diff}
\newcommand{\Spe}{\mathrm Spec }
\newcommand{\mdeg}{\mathrm mdeg}
\newcommand{\lc}{\left\lceil}
\newcommand{\rc}{\right\rceil}
\newcommand{\lf}{\left\lfloor}
\newcommand{\rf}{\right\rfloor}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\R}{\mathbb{R}}
% \newcommand{\C}{\mathbb{C}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\Heis}{\mathrm Heis}
\newcommand{\Fer}{\mathrm Fer}
\newcommand{\Dgl}{{D_{\mathrm gl}}}
\newcommand{\codim}{{\mathrm codim}}
\newcommand{\init}{{\mathrm in_\prec}}
\newcommand{\HomC}{\mathcal{H}\!\mathit{om}}
\DeclareMathOperator{\Ima}{Im}
\newcommand{\cL}{{\mathcal{L}}}
\newcommand{\Id}{{\mathrm Id}}
% \newcommand{\Hom}{{\mathrm Hom}}
\newcommand{\tg}{{\mathrm tg}}
\newcommand{\cO}{ {\mathcal{O} } }
\newcommand{\TO}{{\mathcal{T}_\mathcal{O} }}
\newcommand{\T}{{\mathcal{T}}}
% \newcommand{\Aut}{{ \mathrm Aut }}
\newcommand{\Fp}{{\mathbb{F}_p}}
\newcommand{\F}{{\mathbb{F}}}
\newcommand{\im}{{ \mathrm Im }}
\renewcommand{\O}{{\mathcal{O}}}
% \newcommand{\asp}{ \begin{array}{c} \; \\ \; \\mathrm{end}{array}}
% \newcommand{\Gal}{\mathrm{Gal}}
\renewcommand{\mod}{{\;\mathrm{mod}}}
\newcommand{\G}{{\mathcal{G}}}
\newcommand{\rad}{{\mathrm rad}}
\newcommand{\Rgl}{R}
\newcommand{\m}{\mathfrak{m}}
\newcommand{\bb}{\textbf}
\newcommand{\uu}{\underline}
\newcommand{\ol}{\overline}
\newcommand{\mc}{\mathcal}
\newcommand{\wh}{\widehat}
\newcommand{\wt}{\widetilde}
\newcommand{\mf}{\mathfrak}
\newcommand{\ms}{\mathscr}
\renewcommand{\AA}{\mathbb{A}}
\newcommand{\II}{\mathbb{I}}
\newcommand{\HH}{\mathbb{H}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\LL}{\mathbb{L}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\FF}{\mathbb{F}}
\newcommand{\VV}{\mathbb{V}}
\newcommand{\ddeg}{\textbf{deg}\,}
\DeclareMathOperator{\SSh}{-Sh}
\DeclareMathOperator{\Ind}{Ind}
\DeclareMathOperator{\pr}{pr}
\DeclareMathOperator{\tr}{tr}
\DeclareMathOperator{\Sh}{Sh}
\DeclareMathOperator{\diag}{diag}
\DeclareMathOperator{\sgn}{sgn}
\DeclareMathOperator{\Divv}{Div}
\DeclareMathOperator{\Coind}{Coind}
\DeclareMathOperator{\coker}{coker}
% \DeclareMathOperator{\im}{im}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\Tot}{Tot}
\DeclareMathOperator{\Span}{Span}
\DeclareMathOperator{\res}{res}
\DeclareMathOperator{\Gl}{Gl}
\DeclareMathOperator{\Sl}{Sl}
\DeclareMathOperator{\GCD}{GCD}
\DeclareMathOperator{\ord}{ord}
\DeclareMathOperator{\Spec}{Spec}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\Gal}{Gal}
\DeclareMathOperator{\Proj}{Proj}
\DeclareMathOperator{\Ext}{Ext}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\End}{End}
\DeclareMathOperator{\cha}{char}
\DeclareMathOperator{\Cl}{Cl}
\DeclareMathOperator{\Jac}{Jac}
\DeclareMathOperator{\Lie}{Lie}
\DeclareMathOperator{\GSp}{GSp}
\DeclareMathOperator{\Sp}{Sp}
\DeclareMathOperator{\Sym}{Sym}
\DeclareMathOperator{\qlog}{qlog}
\DeclareMathOperator{\Aut}{Aut}
\DeclareMathOperator{\divv}{div}
\DeclareMathOperator{\mmod}{-mod}
\DeclareMathOperator{\ev}{ev}
\DeclareMathOperator{\Indec}{Indec}
\DeclareMathOperator{\pole}{pole}
% \DeclareMathOperator{\Ima}{Im}
% \newcommand{\defeq}{\mathrel{\vcenter{\baselineskip0.5ex \lineskiplimit0pt
% \hbox{\scriptsize.}\hbox{\scriptsize.}}}%
\newcommand\overmat[2]{%
\makebox[0pt][l]{$\smash{\color{white}\overbrace{\phantom{%
\begin{matrix}#2\end{matrix}}}^{\text{\color{black}#1}}}$}#2}
\newcommand\bovermat[2]{%
\makebox[0pt][l]{$\smash{\overbrace{\phantom{%
\begin{matrix}#2\end{matrix}}}^{\text{#1}}}$}#2}
\date{\today}
\title{Galois Action on Homology of the Heisenberg Curve.}
% \author[A. Kontogeorgis]{Aristides Kontogeorgis}
% \address{Department of Mathematics, National and Kapodistrian University of Athens
% Pane\-pist\-imioupolis, 15784 Athens, Greece}
% \email{kontogar@math.uoa.gr}
% \author[D. Noulas]{Dimitrios Noulas}
% \address{Department of Mathematics, National and Kapodistrian University of Athens\\
% Panepistimioupolis, 15784 Athens, Greece}
% \email{dnoulas@math.uoa.gr}
% \author[I. Tsouknidas]{Ioannis Tsouknidas }
% \address{Department of Mathematics, National and Kapodistrian University of Athens\\
% Panepistimioupolis, 15784 Athens, Greece}
% \email{iotsouknidas@math.uoa.gr}
\date \today
\makeatletter
\newcommand{\aprod}{\mathop{\operator@font \hbox{\Large$\ast$}}}
\makeatother
%\renewcommand{\thefootnote}{\fnsymbol{footnote}}
\begin{document}
\section{Cyclic Ramification}
Serre Local fields p. 77 Hasse- Arf for cyclic groups.
For a cyclic group $G= \mathbb{Z}/p^n$ and $G(i)=\mathbb{Z}/p^{n-i}$, there are integers $i_0,i_1, \ldots , i_{n-1}>0$ such that
\begin{align}
\label{eq:serreI}
G(0) & =G_0= \cdots = G_{i_0} &&=G^0 = \cdots = G^{i_0} \\
G(1) & = G_{i_{0}+1 }= \cdots = G_{i_{0}+ p i_1 } &&= G^{i_0+1} = \cdots = G^{i_0+i_1}
\nonumber \\
G(2) &= G_{i_0+p i_1 +1} = \cdots = G_{i_0 +p i_1 + p^2 i_2} & &= G^{i_0+i_1+1} = \cdots = G^{i_0+ i_1 +i_2} \nonumber
\end{align}
We also set $i_{-1}=-1$.
This means that the lower jumps occur at the integers
\[
i_0, i_0+i_1 p, i_0+ i_1 p + i_2 p^2, \ldots , i_0 + i_1 p + i_2 p^2 + \cdots i_{n-1} p^{n-1}
\]
while the upper jumps occur at
\[
i_0, i_0+i_1, i_0+ i_1 + i_2, \ldots , i_0 + i_1 + i_2 + \cdots i_{n-1}
\]
%
\begin{definition}
Let for any $\ZZ/p^n$-cover $X \to Y$
%
{\color{blue}
\begin{align*}
u_{X/Y, P}^{(t)} &:= \min \{ t \ge 0 : G_P^{(t)} \cong \ZZ/p^{n-t} \},\\
l_{X/Y, P}^{(t)} &:= \min \{ t \ge 0 : G_{P, t} \cong \ZZ/p^{n-t} \}.
\end{align*}
}
{\color{red}
\begin{align*}
u_{X/Y, P}^{(t)} &:= \min \{ \nu \ge 0 : G_P^{(\nu)} \cong \ZZ/p^{n-t} \},\\
l_{X/Y, P}^{(t)} &:= \min \{ \nu \ge 0 : G_{P, \nu} \cong \ZZ/p^{n-t} \}.
\end{align*}
but maybe you mean
\begin{align}
u_{X/Y, P}^{(t)} &:= \min \{ \nu \ge 0 : G_P^{(\nu)} \cong \ZZ/p^{n-t} \}-1,\\
l_{X/Y, P}^{(t)} &:= \min \{ \nu \ge 0 : G_{P, \nu} \cong \ZZ/p^{n-t} \}-1.
\end{align}
}
\end{definition}
%
{\color{blue}
Note that if $G_P = \ZZ/p^n$, this coincides with the standard definition of
the $t$th upper (resp. lower) ramification jump of $X \to Y$ at $P$.
If $G_P = \ZZ/p^m$, then (??relation with usual jumps??). By Hasse--Arf theorem (cf. ???),
the numbers $u_{X/Y, P}^{(t)}$ are integers.
%
}
Observe that if $G_P= \ZZ/ p^{n}$ with corresponding integers $i_0=i_0(P), \ldots , i_{n-1}=i_{n-1}(P)$ at $P$ then eq. (\ref{eq:serreI}) gives us
\begin{align*}
l^{(t)}_{X/Y,P} &=
\begin{cases}
0 , &\text{ if } t=0 \\
i_0 + i_{1} p+ \cdots+ i_{t-1} p^{t-1}
% {\color{blue} +1}, &\text{ if } t>0 \\
\end{cases}
\\
u^{(t)}_{X/Y,P} &=
\begin{cases}
0 , &\text{ if } t=0 \\
i_0 + i_{1} + \cdots+ i_{t-1}
% {\color{blue} +1}, &\text{ if } t>0 \\
\end{cases}
\end{align*}
% that is not the upper jump but the next number.
We then have:
\[
i_{j-1} =u_{X/Y,P}^{(j)}-u_{X /Y,P}^{(j-1)}= \frac{1}{p^{j-1}} (l_{X/ Y,P}^{j} - l_{X/ Y,P}^{j-1}) = \frac{1}{p^{j-1}} p^{j-1} i_{j-1}
\]
{\color{red} you have written it in the other way out, do you agree?}
% Now the ramification jumps for a subgroup I thing are a little bit different from what you write.
The lower ramification jumps for the subgroup $ \mathbb{Z}/p^{n-N} =G(N)$ are given by
\begin{align*}
I_0(N) &=i_0 + i_1 p + \cdots + i_{N} p^{t},\\
I_0(N) + p^{N+1} i_{i+1} &=I_0(N)+ p I_1(N),\\
I_0(N) + p I_1(N) + p^{N+2} i_{N+2} &= I_0(N) + p I_1(N) + p^2 I_2(N),\\
\ldots
\end{align*}
that is
\begin{align*}
I_0(N)&= i_0 + i_1 p + \cdots + i_{N} p^{N},\\
I_1(N)&= p^N i_{N+1},
\\
I_2(N)& = p^N i_{N+2},\\
\ldots
\end{align*}
This proves that if $\Gal(X/ X^{\prime} )= G(N)$ then
\begin{align*}
l_{X/X^{\prime},P}^{(t)} &=I_0 + I_1 p + \cdots + I_{t-1}p^{t-1}+1\\
&=
i_0 + i_1 p + \cdots + i_{t+N-1} p^{t+N-1}+1\\
&= l_{X/Y,P}^{(t+N)}
\end{align*}
and
\begin{align*}
u_{X/X^{\prime},P}^{(t)} &=I_0 + I_1 + \cdots + I_{t-1}+1\\
&=
(i_0 + i_1 p + \cdots + i_{N} p^{N})+ i_{N+1} p^N + \cdots + i_{N+t} p^N + 1\\
&=
\end{align*}
\vskip 2cm
Assume now that $X \to Y$ is not \'{e}tale. Therefore $X \to X''$ is also not \'{e}tale.
$\Gal(X / X'')= \ZZ/p$ and $\Gal(X /Y^{\prime} ) = \ZZ/p^{n-1}$.
\[
\xymatrix{
& X \ar[dl]_{ \ZZ / p\cong \langle \sigma^{p^{n-1} } \rangle } \ar[dr]^{H^{\prime} =\langle \sigma^p \rangle \cong \ZZ / p^{n-1} =G(1) } \\
X '' \ar[dr]& & Y^{\prime} \ar[dl] \\
& Y
}
\]
Note that for any $P \in X(k)$:
{\color{blue}
%
\begin{equation}
\label{eq:pul}
p \cdot u^{(n)}_{X/Y, P} = u^{(n-1)}_{X/Y', P} + (p-1) \cdot l^{(1)}_{Y'/Y, Q},
\end{equation}
%
}
Indeed, {\color{blue} blue color means that it is going to be erased}
{\color{red}
\begin{align}
u^{(n)}_{X/ Y, P } &= (i_0 + i_1 + \cdots + i_{n-1}
{\color{blue} +1 } ) \\
u^{(n-1)}_{X/Y', P} &= (i_0 + i_1 p) + i_2 p + \cdots + i_{1+n-1} p
{\color{blue} +1}
\\ \label{eq:l1}
l^{(1)}_{Y'/Y, Q} &= u^{(1)}_{Y^{\prime} /Y,Q}= u^{(1)}_{(X/ Y,Q)} = l^{(1)}_{(X/ Y,Q)} = i_0
{\color{blue} + 1}.
\end{align}
}
where $Q$ denotes the image of~$P$ in~$Y'$.
Riemann Hurwitz formula for the cover $Y^{\prime} / Y$, together with eq. (\ref{eq:l1}), implies that
\begin{equation}
\label{eq:RH}
2(g_{Y^{\prime} }-1) =
2p(g_Y- 1) + \sum_{P\in Y^{\prime} (k)} (p-1)(l^{(1)}_{Y^{\prime} / Y}+1)
\end{equation}
By induction hypothesis for $H'$ acting on $X$, we have the following isomorphism of $k[H']$-modules:
%
\[
\mc M \cong \mc J_{p^{n-1}}^{2 (g_{Y'} - 1)} \oplus \mc J_{p^{n-1} - p^{n - m} + 1}^2 \oplus \bigoplus_{\substack{P \in X(k)\\
P \neq P_0}} \mc J_{p^{n-1} - p^{n-1}/e'_P}^2
\oplus \bigoplus_{P \in X(k)} \bigoplus_{t = 0}^{n-2} \mc J_{p^n - p^t}^{u_{X/Y', P}^{(t+1)} - u_{X/Y', P}^{(t)}}
\]
%
where $e'_P := e_{X/Y', P}$.
%
\begin{align*}
\dim_k \mc T^i \mc M &=
2(g_{Y'} - 1) + 2 + 2(\# R - 1) + \sum_{P \in X(k)} (u_{X/Y', P}^{(n-1)} - 1)\\
&
\stackrel{(\ref{eq:RH})}{=} 2 p (g_Y - 1) + \sum_{Q \in Y'(k)} (p-1) \cdot (l_{Y'/Y, Q}^{(1)} + 1)\\
&+ 2 + 2(\# R - 1) + \sum_{P \in X(k)} (u_{X/Y', P}^{(n-1)} - 1)\\
&
\stackrel{(\ref{eq:pul})}{=} p \cdot \left( 2(g_Y - 1) + 2\# R
{\color{red}/p}
{\color{red}+
\frac{1}{p}\sum_{Q \in Y'(k)} (p-1)
}
+ \sum_{P \in X(k)} (u_{X/Y, P}^{(n)} - 1
{\color{red}/p}
) \right)
\\
&=
{\color{red}
p \cdot \left( 2(g_Y - 1) + \# R
+ \sum_{P \in R} u_{X/Y, P}^{(n)}
\right)
}
\end{align*}
{\color{red}
I guess that we want to combine
$2\# R/ p + \frac{1}{p}\sum_{Q \in Y'(k)} (p-1)$ together. This depends on the ramification of all ramified points in $H^{\prime}$...
}
%
where
%
\[ R := \{ P \in X(k) : e_P > 1 \} = \{ P \in X(k) : e'_P > 1 \}. \]
%
In particular, $\dim_k \mc T^1 \mc M = \ldots = \dim_k \mc T^{p^{n-1} - p^{n-2}} \mc M$.
Thus by Lemma~\ref{lem:lemma_mcT_and_T}
%
\begin{align*}
\dim_k T^1 \mc M &= \ldots = \dim_k T^{p^n - p^{n-1}} \mc M = \frac{1}{p} \dim_k \mc T^1 \mc M\\
&= 2(g_Y - 1) + 2 + 2(\# R - 1) + \sum_{P \in X(k)} (u_{X/Y, P}^{(n)} - 1).
\end{align*}
%
By Lemma~\ref{lem:trace_surjective} since $X \to X''$ is not \'{e}tale, the map $\tr_{X/X''} : H^1_{dR}(X) \to H^1_{dR}(X'')$ is surjective. Recall that
in $\FF_p[x]$ we have the identity:
%
\[
1 + x + \ldots + x^{p-1} = (x - 1)^{p-1}.
\]
%
Therefore in the group ring $k[H]$ we have:
%
\[
\tr_{X/X''} = \sum_{j = 0}^{p-1} (\sigma^{p^{n-1}})^j = (\sigma^{p^{n-1}} - 1)^{p-1} =
(\sigma - 1)^{p^n - p^{n-1}}.
\]
%
This implies that:
%
\[
\ker(\tr_{X/X''} : \mc M \to \mc M'') = \mc M^{(p^n - p^{n-1})}
\]
%
and that $\tr_{X/X''}$ induces a $k$-linear isomorphism $T^{i + p^n - p^{n-1}} \mc M \to \mc T^i \mc M''$ for any $i \ge 1$. Thus:
%
\[
\dim_k T^{i + p^n - p^{n-1}} \mc M = \dim_k \mc T^i \mc M'' = ....
\]
%
This ends the proof.
\end{document}