diff --git a/article_de_rham_cyclic.synctex.gz b/article_de_rham_cyclic.synctex.gz index 2aef626..052b606 100644 Binary files a/article_de_rham_cyclic.synctex.gz and b/article_de_rham_cyclic.synctex.gz differ diff --git a/article_de_rham_cyclic.tex b/article_de_rham_cyclic.tex index 84c71a1..0dbf6e0 100644 --- a/article_de_rham_cyclic.tex +++ b/article_de_rham_cyclic.tex @@ -442,7 +442,11 @@ shows that $m_{\sigma - 1}$ is well-defined and injective. % Assume now that $Q \in B_{Y'/Y}$. Then there exists a unique point $Q' \in Y'(k)$ in the preimage of $Q$ through $Y' \to Y$. Moreover, $m_{X/Y, Q} = n$, $m_{X/Y', Q'} = n-1$. - Recall also that by \cite[???]{Serre1979} there exist integers $i_{X/Y, P}^{(0)}, i_{X/Y, P}^{(1)}, \ldots$ such that for every $t \ge 0$: + Recall also that by + {\color{red} + \cite[Example p.76]{Serre1979} + } + there exist integers $i_{X/Y, P}^{(0)}, i_{X/Y, P}^{(1)}, \ldots$ such that for every $t \ge 0$: % \begin{align*} u_{X/Y, P}^{(t)} &= i_{X/Y, P}^{(0)} + i_{X/Y, P}^{(1)} + \cdots + i_{X/Y, P}^{(t-1)}\\