X ---> X/C
This commit is contained in:
parent
6778e16191
commit
a1a831d315
@ -2,5 +2,5 @@
|
||||
\BOOKMARK [1][-]{section.2}{\376\377\0002\000.\000\040\000N\000o\000t\000a\000t\000i\000o\000n\000\040\000a\000n\000d\000\040\000p\000r\000e\000l\000i\000m\000i\000n\000a\000r\000i\000e\000s}{}% 2
|
||||
\BOOKMARK [1][-]{section.3}{\376\377\0003\000.\000\040\000C\000y\000c\000l\000i\000c\000\040\000c\000o\000v\000e\000r\000s}{}% 3
|
||||
\BOOKMARK [1][-]{section.4}{\376\377\0004\000.\000\040\000P\000r\000o\000o\000f\000\040\000o\000f\000\040\000M\000a\000i\000n\000\040\000T\000h\000e\000o\000r\000e\000m}{}% 4
|
||||
\BOOKMARK [1][-]{section.5}{\376\377\0005\000.\000\040\000E\000x\000a\000m\000p\000l\000e\000s}{}% 5
|
||||
\BOOKMARK [1][-]{section.5}{\376\377\0005\000.\000\040\000A\000n\000\040\000e\000x\000a\000m\000p\000l\000e\000\040\040\023\000\040\000a\000\040\000s\000u\000p\000e\000r\000e\000l\000l\000i\000p\000t\000i\000c\000\040\000c\000u\000r\000v\000e\000\040\000w\000i\000t\000h\000\040\000a\000\040\000m\000e\000t\000a\000c\000y\000c\000l\000i\000c\000\040\000a\000c\000t\000i\000o\000n}{}% 5
|
||||
\BOOKMARK [1][-]{section*.1}{\376\377\000R\000e\000f\000e\000r\000e\000n\000c\000e\000s}{}% 6
|
||||
|
Binary file not shown.
@ -834,25 +834,24 @@ Let $X$ be a curve with an action of $G$ and write $Y := X/H$. For any $k[C]$-mo
|
||||
is determined by higher ramification data as well.
|
||||
\end{proof}
|
||||
%
|
||||
\section{Examples}
|
||||
%
|
||||
Assume that $G$ is a group with a normal $p$-Sylow subgroup $H$ of order~$p$. Let $C := G/H$. Then $G = H \rtimes_{\chi} C$
|
||||
The method of proof of Main Theorem allows to obtain explicit formulas in the style of the result of Chevalley--Weil for
|
||||
particular group. Assume that $G$ is a group with a normal $p$-Sylow subgroup $H$ of order~$p$. Let $C := G/H$. Then $G = H \rtimes_{\chi} C$
|
||||
for a homomorphism $\chi : C \to \FF_p^{\times}$.
|
||||
%
|
||||
\begin{Proposition}
|
||||
Keep the above notation. {\color{red} Assume that $k$ is algebraically closed.} If $G$ acts on a curve $X$ and the cover $X \to X/H$ is not \'{e}tale, then:
|
||||
%
|
||||
\[
|
||||
Keep the above notation. {\color{red} Assume that $k$ is algebraically closed.} If $G$ acts on a curve $X$ and the cover $X \to X/H$ is not \'{e}tale, then:
|
||||
%
|
||||
\[
|
||||
H^1_{dR}(X) \cong \bigoplus_{W \in \Indec(C)} \mc V(W, p)^{\oplus a^{dR}_{Y, C}(W)} \oplus \mc V(W, p-1)^{\oplus b_W},
|
||||
\]
|
||||
%
|
||||
where for any $W \in \Indec(k[C])$ the number $a_W$ is as in the equality~\eqref{eqn:cw} for the action of $C$ on $X$,
|
||||
$a_W'$ is as in the equality~\eqref{eqn:cw} for the action of $C$ on $Y := X/H$ and
|
||||
%
|
||||
\begin{align*}
|
||||
\]
|
||||
%
|
||||
where for any $W \in \Indec(k[C])$ the number $a_W$ is as in the equality~\eqref{eqn:cw} for the action of $C$ on $X$,
|
||||
$a_W'$ is as in the equality~\eqref{eqn:cw} for the action of $C$ on $Y := X/H$ and
|
||||
%
|
||||
\begin{align*}
|
||||
b_W &:= a^{dR}_{X, C}(W) - \frac 1p \sum_{i = 0}^{p-2} a^{dR}_{X, C}(W \otimes \chi^i) - a^{dR}_{Y, C}(W \otimes \chi).
|
||||
\end{align*}
|
||||
%
|
||||
\end{align*}
|
||||
%
|
||||
\end{Proposition}
|
||||
\begin{proof}
|
||||
Theorem~\ref{thm:cyclic_de_rham} easily implies that
|
||||
@ -864,9 +863,14 @@ $a_W'$ is as in the equality~\eqref{eqn:cw} for the action of $C$ on $Y := X/H$
|
||||
for some $A_W, B_W \in \ZZ$. ??
|
||||
\end{proof}
|
||||
%
|
||||
Let $p > 2$ be a prime and $p \nmid m$ an natural number. Fix a primitive root of unity $\zeta \in \ol{\FF}_p^{\times}$ of order $m \cdot (p-1)$.
|
||||
|
||||
\section{An example -- a superelliptic curve with a metacyclic action}
|
||||
%
|
||||
|
||||
Let $p > 2$ be a prime and $p \nmid m$ an natural number. Let $k$ be an algebraically closed field of characteristic~ $p$.
|
||||
Fix a primitive root of unity $\zeta \in \ol{\FF}_p^{\times}$ of order $m \cdot (p-1)$.
|
||||
Note that $\zeta^m \in \FF_p$.
|
||||
We compute now the equivariant structure of the de Rham cohomology for the superelliptic curve $X$ with the affine part given by:
|
||||
In this section we compute the equivariant structure of the de Rham cohomology for the superelliptic curve $X$ with the affine part given by:
|
||||
%
|
||||
\begin{equation*}
|
||||
y^m = x^{p^n} - x.
|
||||
@ -887,24 +891,80 @@ This action is given by:
|
||||
\rho(x, y) &= (\zeta^m \cdot x, \zeta \cdot y).
|
||||
\end{align*}
|
||||
%
|
||||
\begin{Proposition}
|
||||
\[
|
||||
H^1_{dR}(X) \cong ????.
|
||||
\]
|
||||
\end{Proposition}
|
||||
%
|
||||
Note that $X/G \cong \PP^1$ and the quotient map is given by $(x, y) \mapsto (x^p - x)^{p-1}$. Indeed, ????.
|
||||
We claim that the set of branch points is given by $B := \{ 0, \infty \} \cup B'$, where
|
||||
We claim that the set of branch points is given by $B := \{ Q_{\infty}, Q_0, Q_1, \ldots, Q_N \}$, where
|
||||
$N := \frac{p^{n-1} - 1}{p - 1}$, $Q_0 = 0$, $Q_{\infty} = \infty$ and $Q_1, \ldots, Q_N$ are
|
||||
the elements of the set
|
||||
%
|
||||
\[
|
||||
B' := \{ (\alpha^p - \alpha)^{p-1} : \alpha \in \FF_{p^n} \setminus \FF_p \}.
|
||||
\{ (\alpha^p - \alpha)^{p-1} : \alpha \in \FF_{p^n} \setminus \FF_p \}.
|
||||
\]
|
||||
%
|
||||
The set $B'$ has $\frac{p^{n-1} - 1}{p - 1}$ elements. We claim that:
|
||||
Write $C' := \langle \rho^{p-1} \rangle \cong \ZZ/m$ and note that $C'$ is in the center of $G$. We claim that:
|
||||
%
|
||||
\begin{itemize}
|
||||
\item $G_{Q_0} = C$,
|
||||
\item $G_{Q_0}$ is the conjugacy class of the subgroup $C$,
|
||||
|
||||
\item $G_Q = \langle \rho^{p-1} \rangle \cong \ZZ/m$ for $Q \in B'$,
|
||||
\item $G_{Q_{\infty}} = G$ and the lower ramification jump at $Q_{\infty}$ equals $m$,
|
||||
|
||||
\item $G_{Q_{\infty}} = G$ and the lower ramification jump at $Q_{\infty}$ equals $m$.
|
||||
|
||||
\item $G_{Q_i} = C'$ for $i = 1, \ldots, N$.
|
||||
\end{itemize}
|
||||
%
|
||||
Indeed, ????.
|
||||
Indeed, ????. The ramification points of $\pi : X \to X/G$ are as follows:
|
||||
%
|
||||
\begin{itemize}
|
||||
\item points $P_0^{(1)}, \ldots, P_0^{(p)}$ above $Q_0$
|
||||
\item[] (their stabilizers are subgroups $C_1 = C$, $\ldots$, $C_p$
|
||||
conjugated to $C$),
|
||||
|
||||
\item point $P_{\infty}$ above $Q_{\infty}$ (its stabilizer is $G$),
|
||||
|
||||
\item points $P_i^{(1)}, \ldots, P_i^{(p \cdot (p-1))}$ above $Q_i$ for $i = 1, \ldots, N$
|
||||
\item[] (their stabilizers equal $C'$).
|
||||
\end{itemize}
|
||||
%
|
||||
The same points are in the ramification locus of the morphism $X \to X/C$ with the following
|
||||
ramification groups:
|
||||
%
|
||||
\begin{align*}
|
||||
C_{P_0^{(1)}} &= C\\
|
||||
C_{P_0^{(i)}} &= C' \qquad \textrm{ for } i > 1,\\
|
||||
C_{P_{\infty}} &= C\\
|
||||
C_{P_i^{(j)}} &= C' \qquad \textrm{ for } i = 1, \ldots, N, \, j = 1, \ldots, p \cdot (p-1).
|
||||
\end{align*}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Note that $Y := X/H$ is given by the equation:
|
||||
%
|
||||
\[
|
||||
y^m = z^{p^{n-1}} + \ldots + z^p + z.
|
||||
\]
|
||||
%
|
||||
Let $\psi : C \to k^{\times}$ be a primitive character. We claim that:
|
||||
%
|
||||
\begin{align*}
|
||||
a^{dR}_{X, C}(\psi^i) &=
|
||||
\begin{cases}
|
||||
p \cdot N, & \textrm{ if } m \nmid i,\\
|
||||
0, & \textrm{ otherwise. }
|
||||
\end{cases}\\
|
||||
a^{dR}_{Y, C}(\psi^i) &=
|
||||
\begin{cases}
|
||||
\frac{p^{n-1} - 1}{p - 1}, & \textrm{ if } m \nmid i,\\
|
||||
0, & \textrm{ otherwise. }
|
||||
\end{cases}
|
||||
\end{align*}
|
||||
%
|
||||
|
||||
|
||||
%
|
||||
|
Loading…
Reference in New Issue
Block a user