From d29a4adb2283a18a6bbe06eb6ad38c8538f535a7 Mon Sep 17 00:00:00 2001 From: jgarnek Date: Wed, 18 Dec 2024 12:54:34 +0100 Subject: [PATCH] X ---> X/C cases --- article_de_rham_cyclic.tex | 11 ++++++++++- 1 file changed, 10 insertions(+), 1 deletion(-) diff --git a/article_de_rham_cyclic.tex b/article_de_rham_cyclic.tex index 28295c5..e999175 100644 --- a/article_de_rham_cyclic.tex +++ b/article_de_rham_cyclic.tex @@ -924,7 +924,7 @@ Indeed, ????. The ramification points of $\pi : X \to X/G$ are as follows: \item[] (their stabilizers are subgroups $C_1 = C$, $\ldots$, $C_p$ conjugated to $C$), - \item point $P_{\infty}$ above $Q_{\infty}$ (its stabilizer is $G$), + \item a point $P_{\infty}$ above $Q_{\infty}$ (its stabilizer is $G$), \item points $P_i^{(1)}, \ldots, P_i^{(p \cdot (p-1))}$ above $Q_i$ for $i = 1, \ldots, N$ \item[] (their stabilizers equal $C'$). @@ -933,6 +933,15 @@ Indeed, ????. The ramification points of $\pi : X \to X/G$ are as follows: The same points are in the ramification locus of the morphism $X \to X/C$ with the following ramification groups: % +\[ + C_{P_i^{(j)}} = + \begin{cases*} + C, & \textrm{ if } (i, j) = \\ + C', & + \end{cases*} +\] + + \begin{align*} C_{P_0^{(1)}} &= C\\ C_{P_0^{(i)}} &= C' \qquad \textrm{ for } i > 1,\\