Ti M determines structure of M
This commit is contained in:
parent
262535f385
commit
e8f93d5bda
Binary file not shown.
@ -231,7 +231,7 @@ $\mc V(M, i)$ for the $k[G]$-module corresponding to a pair $(M, i) \in \Indec(k
|
|||||||
Finally, we recall the classical Chevalley-Weil formula. Keep the above notation and assume that $p \nmid \# G$. For any $Q \in Y(k)$ let $\chi_Q : G_Q \to k^{\times}$ be the fundamental character of $G_Q$ acting on the tangent space of $Q$. Then:
|
Finally, we recall the classical Chevalley-Weil formula. Keep the above notation and assume that $p \nmid \# G$. For any $Q \in Y(k)$ let $\chi_Q : G_Q \to k^{\times}$ be the fundamental character of $G_Q$ acting on the tangent space of $Q$. Then:
|
||||||
%
|
%
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
H^0(X, \Omega_X) \cong \bigoplus_{W \in \Indec(k[G])} M^{\oplus a_M},
|
H^0(X, \Omega_X) \cong \bigoplus_{M \in \Indec(k[G])} M^{\oplus a_M},
|
||||||
\end{equation}
|
\end{equation}
|
||||||
%
|
%
|
||||||
where:
|
where:
|
||||||
@ -630,8 +630,33 @@ Let $X$ be a curve with an action of $G$ and write $Y := X/H$. For any $k[C]$-mo
|
|||||||
This is basically \cite[proof of Theorem~1.1]{Bleher_Chinburg_Kontogeorgis_Galois_structure}. We sketch the proof for reader's convenience. Let $\psi : C \to k^{\times}$ be a primitive character. Write
|
This is basically \cite[proof of Theorem~1.1]{Bleher_Chinburg_Kontogeorgis_Galois_structure}. We sketch the proof for reader's convenience. Let $\psi : C \to k^{\times}$ be a primitive character. Write
|
||||||
%
|
%
|
||||||
\[
|
\[
|
||||||
M \cong \bigoplus_{a, b} \mc V(\psi^a, b)^{\oplus n(a, b)}.
|
M \cong \bigoplus_{i = 1}^{p^n} \bigoplus_{W \in \Indec(C)} \mc V(W, i)^{\oplus n(W, i)}.
|
||||||
\]
|
\]
|
||||||
|
%
|
||||||
|
Note that as $k[C]$-modules:
|
||||||
|
%
|
||||||
|
\[
|
||||||
|
T^j \mc V(W, i) \cong
|
||||||
|
\begin{cases}
|
||||||
|
W^{\chi^{-j + 1}}, & \textrm{ if } j \le i,\\
|
||||||
|
0, & \textrm{ if } j > i.
|
||||||
|
\end{cases}
|
||||||
|
\]
|
||||||
|
%
|
||||||
|
Hence:
|
||||||
|
%
|
||||||
|
\[
|
||||||
|
T^j M \cong \bigoplus_{i = j}^{p^n} \bigoplus_{W \in \Indec(C)} (W^{\chi^{-j + 1}})^{\oplus n(W, i)}
|
||||||
|
\]
|
||||||
|
%
|
||||||
|
and the $k[C]$-module structure of $T^j M$ determines uniquely
|
||||||
|
the numbers:
|
||||||
|
%
|
||||||
|
\[
|
||||||
|
\sum_{i = j}^{p^n} n(W, i)
|
||||||
|
\]
|
||||||
|
%
|
||||||
|
for every $W \in \Indec(k[C])$. This easily implies that the numbers $n(W, 1)$, $\ldots$, $n(W, p^n)$ are uniquely determined by the $k[C]$-structure of $T^1 M$, $\ldots$, $T^{p^n} M$. The proof follows.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
%
|
%
|
||||||
\begin{Lemma} \label{lem:N+Nchi+...}
|
\begin{Lemma} \label{lem:N+Nchi+...}
|
||||||
|
Loading…
Reference in New Issue
Block a user