new example
This commit is contained in:
parent
77d0e54ffc
commit
f044703839
@ -3,14 +3,18 @@
|
||||
|
||||
\bibitem{MR2035696}
|
||||
Alejandro Adem and R.~James Milgram.
|
||||
\newblock {\em Cohomology of finite groups}, volume 309 of {\em Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]}.
|
||||
\newblock {\em Cohomology of finite groups}, volume 309 of {\em Grundlehren der
|
||||
mathematischen Wissenschaften [Fundamental Principles of Mathematical
|
||||
Sciences]}.
|
||||
\newblock Springer-Verlag, Berlin, second edition, 2004.
|
||||
|
||||
\bibitem{Alperin_local_rep}
|
||||
J.~L. Alperin.
|
||||
\newblock {\em Local representation theory}, volume~11 of {\em Cambridge Studies in Advanced Mathematics}.
|
||||
\newblock {\em Local representation theory}, volume~11 of {\em Cambridge
|
||||
Studies in Advanced Mathematics}.
|
||||
\newblock Cambridge University Press, Cambridge, 1986.
|
||||
\newblock Modular representations as an introduction to the local representation theory of finite groups.
|
||||
\newblock Modular representations as an introduction to the local
|
||||
representation theory of finite groups.
|
||||
|
||||
\bibitem{Bleher_Camacho_Holomorphic_differentials}
|
||||
F.~M. Bleher and N.~Camacho.
|
||||
@ -22,21 +26,31 @@ F.~M. Bleher, T.~Chinburg, and A.~Kontogeorgis.
|
||||
\newblock Galois structure of the holomorphic differentials of curves.
|
||||
\newblock {\em J. Number Theory}, 216:1--68, 2020.
|
||||
|
||||
\bibitem{Bleher_Wood_polydiffs_structure}
|
||||
F.~M. Bleher and A.~Wood.
|
||||
\newblock The {G}alois module structure of holomorphic poly-differentials and
|
||||
{R}iemann-{R}och spaces.
|
||||
\newblock {\em J. Algebra}, 631:756--803, 2023.
|
||||
|
||||
\bibitem{Borevic_Faddeev}
|
||||
Z.~I. {Borevi\v{c}} and D.~K. Faddeev.
|
||||
\newblock Theory of homology in groups. {II}. {P}rojective resolutions of finite groups.
|
||||
\newblock Theory of homology in groups. {II}. {P}rojective resolutions of
|
||||
finite groups.
|
||||
\newblock {\em Vestnik Leningrad. Univ.}, 14(7):72--87, 1959.
|
||||
|
||||
\bibitem{Chevalley_Weil_Uber_verhalten}
|
||||
C.~Chevalley, A.~Weil, and E.~Hecke.
|
||||
\newblock \"{U}ber das verhalten der integrale 1. gattung bei automorphismen des funktionenk\"{o}rpers.
|
||||
\newblock \"{U}ber das verhalten der integrale 1. gattung bei automorphismen
|
||||
des funktionenk\"{o}rpers.
|
||||
\newblock {\em Abh. Math. Sem. Univ. Hamburg}, 10(1):358--361, 1934.
|
||||
|
||||
\bibitem{Curtis_Reiner_Methods_II}
|
||||
C.~W. Curtis and I.~Reiner.
|
||||
\newblock {\em Methods of representation theory. {V}ol. {II}}.
|
||||
\newblock Pure and Applied Mathematics (New York). John Wiley \& Sons, Inc., New York, 1987.
|
||||
\newblock With applications to finite groups and orders, A Wiley-Interscience Publication.
|
||||
\newblock Pure and Applied Mathematics (New York). John Wiley \& Sons, Inc.,
|
||||
New York, 1987.
|
||||
\newblock With applications to finite groups and orders, A Wiley-Interscience
|
||||
Publication.
|
||||
|
||||
\bibitem{Dummigan_99}
|
||||
N.~Dummigan.
|
||||
@ -100,7 +114,8 @@ G.~Lusztig.
|
||||
|
||||
\bibitem{WardMarques_HoloDiffs}
|
||||
S.~Marques and K.~Ward.
|
||||
\newblock Holomorphic differentials of certain solvable covers of the projective line over a perfect field.
|
||||
\newblock Holomorphic differentials of certain solvable covers of the
|
||||
projective line over a perfect field.
|
||||
\newblock {\em Math. Nachr.}, 291(13):2057--2083, 2018.
|
||||
|
||||
\bibitem{Prest}
|
||||
@ -110,7 +125,8 @@ M.~Prest.
|
||||
|
||||
\bibitem{Serre1979}
|
||||
J.-P. Serre.
|
||||
\newblock {\em {Local fields}}, volume~67 of {\em {Graduate Texts in Mathematics}}.
|
||||
\newblock {\em {Local fields}}, volume~67 of {\em {Graduate Texts in
|
||||
Mathematics}}.
|
||||
\newblock Springer-Verlag, New York-Berlin, 1979.
|
||||
\newblock Translated from the French by Marvin Jay Greenberg.
|
||||
|
||||
@ -127,7 +143,8 @@ R.~C. Valentini and M.~L. Madan.
|
||||
|
||||
\bibitem{Weibel}
|
||||
Ch.~A. Weibel.
|
||||
\newblock {\em An introduction to homological algebra}, volume~38 of {\em Cambridge Studies in Advanced Mathematics}.
|
||||
\newblock {\em An introduction to homological algebra}, volume~38 of {\em
|
||||
Cambridge Studies in Advanced Mathematics}.
|
||||
\newblock Cambridge University Press, Cambridge, 1994.
|
||||
|
||||
\end{thebibliography}
|
||||
|
Binary file not shown.
@ -234,13 +234,13 @@ Finally, we recall the classical Chevalley-Weil formula. For any $e \in \NN$, de
|
||||
Keep the above notation and assume that $p \nmid \# G$. Then:
|
||||
%
|
||||
\begin{equation} \label{eqn:cw}
|
||||
H^0(X, \Omega_X) \cong \bigoplus_{W \in \Indec(k[G])} W^{\oplus a(X, G, W)},
|
||||
H^0(X, \Omega_X) \cong \bigoplus_{W \in \Indec(k[G])} W^{\oplus a(W)},
|
||||
\end{equation}
|
||||
%
|
||||
where:
|
||||
%
|
||||
\begin{align*}
|
||||
a(X, G, W) := (g_Y - 1) \cdot \dim_k W + \sum_{Q \in Y(k)} \sum_{i = 1}^{e_{X/Y, Q} - 1} \frac{e_{X/Y, Q} - i}{e_{X/Y, Q}} \cdot N_{Q, i}(W) + \llbracket W \cong k \rrbracket,
|
||||
a(W) := (g_Y - 1) \cdot \dim_k W + \sum_{Q \in Y(k)} \sum_{i = 1}^{e_{X/Y, Q} - 1} \frac{e_{X/Y, Q} - i}{e_{X/Y, Q}} \cdot N_{Q, i}(W) + \llbracket W \cong k \rrbracket,
|
||||
\end{align*}
|
||||
%
|
||||
and $N_{Q, i}(W)$ is the multiplicity of the character $\chi_{e_Q}^i$ in the $k[G_Q]$-module $W \otimes_{k[G_Q]} \theta_{X/Y, Q}$.
|
||||
@ -249,13 +249,13 @@ Finally, we recall the classical Chevalley-Weil formula. For any $e \in \NN$, de
|
||||
\begin{Corollary}[Chevalley--Weil formula for the de Rham cohomology]
|
||||
Keep the notation of Proposition~\ref{prop:chevalley_weil}. Then:
|
||||
\begin{equation} \label{eqn:cw_dR}
|
||||
H^1_{dR}(X) \cong \bigoplus_{W \in \Indec(k[G])} W^{\oplus a^{dR}(X, G, W)}.
|
||||
H^1_{dR}(X) \cong \bigoplus_{W \in \Indec(k[G])} W^{\oplus a^{dR}(W)}.
|
||||
\end{equation}
|
||||
%
|
||||
where:
|
||||
%
|
||||
\begin{align*}
|
||||
a^{dR}(X, G, W) := 2 (g_Y - 1) \cdot \dim_k W + \sum_{Q \in Y(k)} \dim_k W/W^{G_Q} + 2 \cdot \llbracket W \cong k \rrbracket.
|
||||
a^{dR}(W) := 2 (g_Y - 1) \cdot \dim_k W + \sum_{Q \in Y(k)} \dim_k W/W^{G_Q} + 2 \cdot \llbracket W \cong k \rrbracket.
|
||||
\end{align*}
|
||||
%
|
||||
\end{Corollary}
|
||||
@ -265,17 +265,17 @@ Finally, we recall the classical Chevalley-Weil formula. For any $e \in \NN$, de
|
||||
\begin{align*}
|
||||
H^1_{dR}(X) &\cong H^0(X, \Omega_X) \oplus H^1(X, \mc O_X)\\
|
||||
&\cong H^0(X, \Omega_X) \oplus H^0(X, \Omega_X)^{\vee}\\
|
||||
&\cong \bigoplus_{W \in \Indec(k[G])} W^{\oplus (a(X, G, W) + a(X, G, W^{\vee}))}.
|
||||
&\cong \bigoplus_{W \in \Indec(k[G])} W^{\oplus (a(W) + a(W^{\vee}))}.
|
||||
\end{align*}
|
||||
%
|
||||
Note moreover that $N_{Q, i}(W^{\vee}) = N_{Q, e_Q - i}(W)$
|
||||
(since $\chi_{e_Q}^{e_Q - i}$ is the dual representation to $\chi_{e_Q}^i$) and:
|
||||
(since $\chi_{e_Q}^{e_Q - i}$ is the dual representation to $\chi_{e_Q}^i$), $N_{Q, 0}(W) = \dim_k W^{G_Q}$ and:
|
||||
%
|
||||
\[
|
||||
\sum_{i = 0}^{e_Q - 1} N_{Q, i}(W) = \dim_k W.
|
||||
\]
|
||||
%
|
||||
Therefore $a(X, G, W) + a(X, G, W^{\vee})$ equals:
|
||||
Therefore $a(W) + a(W^{\vee})$ equals:
|
||||
%
|
||||
\begin{align*}
|
||||
2 (g_Y - 1) \cdot \dim_k W
|
||||
@ -296,6 +296,8 @@ Finally, we recall the classical Chevalley-Weil formula. For any $e \in \NN$, de
|
||||
This ends the proof.
|
||||
%
|
||||
\end{proof}
|
||||
%
|
||||
When considering an action of a group~$G$ on a curve $X$ we will write $a_{X, G}^{dR}(W)$ instead of $a^{dR}(W)$ for clarity.
|
||||
}
|
||||
|
||||
\section{Cyclic covers}
|
||||
@ -834,14 +836,14 @@ for a homomorphism $\chi : C \to \FF_p^{\times}$.
|
||||
Keep the above notation. {\color{red} Assume that $k$ is algebraically closed.} If $G$ acts on a curve $X$ and the cover $X \to X/H$ is not \'{e}tale, then:
|
||||
%
|
||||
\[
|
||||
H^1_{dR}(X) \cong \bigoplus_{W \in \Indec(C)} \mc V(W, p)^{\oplus a_W'} \oplus \mc V(W, p-1)^{\oplus b_W},
|
||||
H^1_{dR}(X) \cong \bigoplus_{W \in \Indec(C)} \mc V(W, p)^{\oplus a^{dR}_{Y, C}(W)} \oplus \mc V(W, p-1)^{\oplus b_W},
|
||||
\]
|
||||
%
|
||||
where for any $W \in \Indec(k[C])$ the number $a_W$ is as in the equality~\eqref{eqn:cw} for the action of $C$ on $X$,
|
||||
$a_W'$ is as in the equality~\eqref{eqn:cw} for the action of $C$ on $Y := X/H$ and
|
||||
%
|
||||
\begin{align*}
|
||||
b_W &:= \frac 1p \left( p \cdot a^{dR}_{X, C}(W) - \sum_{i = 0}^{p-2} a^{dR}_{X, G}(W \otimes \chi^i) \right) - a^{dR}_{Y, G}(W \otimes \chi).
|
||||
b_W &:= a^{dR}_{X, C}(W) - \frac 1p \sum_{i = 0}^{p-2} a^{dR}_{X, C}(W \otimes \chi^i) - a^{dR}_{Y, C}(W \otimes \chi).
|
||||
\end{align*}
|
||||
%
|
||||
\end{Proposition}
|
||||
@ -854,20 +856,28 @@ $a_W'$ is as in the equality~\eqref{eqn:cw} for the action of $C$ on $Y := X/H$
|
||||
%
|
||||
for some $A_W, B_W \in \ZZ$. ??
|
||||
\end{proof}
|
||||
|
||||
\noindent Let $p > 2$. Consider the Mumford curve
|
||||
%
|
||||
Let $p > 2$ be a prime and $p \nmid m$ an natural number. Fix a root of unity $\zeta \in \ol{\FF}_p^{\times}$ of order $m \cdot (p-1)$.
|
||||
Note that $\zeta^m \in \FF_p$.
|
||||
We compute now the equivariant structure of the de Rham cohomology for the superelliptic curve $X$ with the affine part given by:
|
||||
%
|
||||
\begin{equation*}
|
||||
y^m = x^{p^m} - x.
|
||||
\end{equation*}
|
||||
%
|
||||
Note that for $m = 2$ this curve was considered e.g. in \cite[Section~4]{Bleher_Wood_polydiffs_structure}.
|
||||
It is a curve of genus $\frac 12 (p^2 - 1) (m-1)$ with an action of the group $G := H \rtimes_{\chi} C$,
|
||||
where $H := \langle \sigma \rangle \cong \ZZ/p$, $C := \langle \rho \rangle \cong \ZZ/(m \cdot p - m)$ and
|
||||
%
|
||||
\[
|
||||
X : (x^p - x) \cdot (y^p - y) = 1.
|
||||
\chi : C \to H, \quad \rho \mapsto \sigma^{\zeta^m}.
|
||||
\]
|
||||
%
|
||||
It is a curve of genus $(p-1)^2$ and an action of the group $(\ZZ/p \times \ZZ/p) \rtimes D_{2(p-1)}$ given by:
|
||||
This action is given by:
|
||||
%
|
||||
\begin{align*}
|
||||
\sigma_0(x, y) &= (x+1, y),\\
|
||||
\sigma_1(x, y) &= (x, y+1),\\
|
||||
s(x, y) &= (y, x),\\
|
||||
\theta(x, y) &= (\zeta \cdot x, \zeta^{-1} \cdot y) \quad \textrm{ for } \FF_p^{\times} = \langle \zeta \rangle.
|
||||
\sigma(x, y) &= (x+1, y),\\
|
||||
\rho(x, y) &= (\zeta^m \cdot x, \zeta \cdot y).
|
||||
\end{align*}
|
||||
%
|
||||
Recall representation theory of $D_{2(p - 1)}$ (cf. \cite[Example~8.2.3]{Steinberg_Representation_book}).
|
||||
@ -909,18 +919,9 @@ Let also $\chi_0$ be the representation:
|
||||
We claim that as $k[C]$-modules: ??k or $\FF_p$??
|
||||
%
|
||||
\begin{equation}
|
||||
H^1_{dR}(X) \cong V_0^{\oplus (p-1)} \oplus \bigoplus_{j = 1}^{\frac{p-1}{2}} V_j^{\oplus 2(p-1)}.
|
||||
H^1_{dR}(X) \cong ????.
|
||||
\end{equation}
|
||||
|
||||
|
||||
|
||||
{\color{gray}
|
||||
Basis of holomorphic differentials:
|
||||
%
|
||||
\[
|
||||
\omega_{a, b} = \frac{x^a \cdot y^b \, dx}{(x^p - x)} \qquad 0 \le a, b \le p-2.
|
||||
\]
|
||||
}
|
||||
|
||||
|
||||
\bibliography{bibliografia,AKGeneral}
|
||||
|
@ -1,3 +1,20 @@
|
||||
@article {Bleher_Wood_polydiffs_structure,
|
||||
AUTHOR = {Bleher, F. M. and Wood, A.},
|
||||
TITLE = {The {G}alois module structure of holomorphic
|
||||
poly-differentials and {R}iemann-{R}och spaces},
|
||||
JOURNAL = {J. Algebra},
|
||||
FJOURNAL = {Journal of Algebra},
|
||||
VOLUME = {631},
|
||||
YEAR = {2023},
|
||||
PAGES = {756--803},
|
||||
ISSN = {0021-8693,1090-266X},
|
||||
MRCLASS = {11G20 (14G17 14H05 20C20)},
|
||||
MRNUMBER = {4595907},
|
||||
MRREVIEWER = {Martha\ Rzedowski-Calder\'on},
|
||||
DOI = {10.1016/j.jalgebra.2023.05.010},
|
||||
URL = {https://doi.org/10.1016/j.jalgebra.2023.05.010},
|
||||
}
|
||||
|
||||
@book {Alperin_local_rep,
|
||||
AUTHOR = {Alperin, J. L.},
|
||||
TITLE = {Local representation theory},
|
||||
|
Loading…
Reference in New Issue
Block a user