% !TeX spellcheck = en_GB \RequirePackage[l2tabu, orthodox]{nag} \documentclass[a4paper,12pt]{amsart} %\usepackage[margin=32mm,bottom=40mm]{geometry} %\renewcommand{\baselinestretch}{1.1} \usepackage{microtype} \usepackage[charter]{mathdesign} \let\circledS\undefined % \usepackage[T1]{fontenc} \usepackage{tikz, tikz-cd, stmaryrd, amsmath, amsthm, amssymb, hyperref, bbm, mathtools, mathrsfs} %\usepackage{upgreek} \newcommand{\upomega}{\boldsymbol{\omega}} \newcommand{\upeta}{\boldsymbol{\eta}} \newcommand{\dd}{\boldsymbol{d}} \usepackage[shortlabels]{enumitem} \usetikzlibrary{arrows} \usetikzlibrary{positioning} \usepackage[utf8x]{inputenc} % \usepackage[MeX]{polski} \newcommand{\bb}{\textbf} \newcommand{\uu}{\underline} \newcommand{\ol}{\overline} \newcommand{\mc}{\mathcal} \newcommand{\wh}{\widehat} \newcommand{\wt}{\widetilde} \newcommand{\mf}{\mathfrak} \newcommand{\ms}{\mathscr} \renewcommand{\AA}{\mathbb{A}} \newcommand{\II}{\mathbb{I}} \newcommand{\HH}{\mathbb{H}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\CC}{\mathbb{C}} \newcommand{\RR}{\mathbb{R}} \newcommand{\PP}{\mathbb{P}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\LL}{\mathbb{L}} \newcommand{\NN}{\mathbb{N}} \newcommand{\FF}{\mathbb{F}} \newcommand{\VV}{\mathbb{V}} \newcommand{\ddeg}{\textbf{deg}\,} \DeclareMathOperator{\SSh}{-Sh} \DeclareMathOperator{\Ind}{Ind} \DeclareMathOperator{\pr}{pr} \DeclareMathOperator{\tr}{tr} \DeclareMathOperator{\Sh}{Sh} \DeclareMathOperator{\diag}{diag} \DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\Divv}{Div} \DeclareMathOperator{\Coind}{Coind} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\Tot}{Tot} \DeclareMathOperator{\Span}{Span} \DeclareMathOperator{\res}{res} \DeclareMathOperator{\Gl}{Gl} \DeclareMathOperator{\Sl}{Sl} \DeclareMathOperator{\GCD}{GCD} \DeclareMathOperator{\ord}{ord} \DeclareMathOperator{\Spec}{Spec} \DeclareMathOperator{\rank}{rank} \DeclareMathOperator{\Gal}{Gal} \DeclareMathOperator{\Proj}{Proj} \DeclareMathOperator{\Ext}{Ext} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\End}{End} \DeclareMathOperator{\cha}{char} \DeclareMathOperator{\Cl}{Cl} \DeclareMathOperator{\Jac}{Jac} \DeclareMathOperator{\Lie}{Lie} \DeclareMathOperator{\GSp}{GSp} \DeclareMathOperator{\Sp}{Sp} \DeclareMathOperator{\Sym}{Sym} \DeclareMathOperator{\qlog}{qlog} \DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\divv}{div} \DeclareMathOperator{\mmod}{-mod} \DeclareMathOperator{\ev}{ev} \DeclareMathOperator{\Indec}{Indec} \DeclareMathOperator{\pole}{pole} \theoremstyle{plain} \newtheorem{Theorem}{Theorem}[section] \newtheorem*{mainthm}{Main Theorem} \newtheorem{Remark}[Theorem]{Remark} \newtheorem{Lemma}[Theorem]{Lemma} \newtheorem{Corollary}[Theorem]{Corollary} \newtheorem{Conjecture}[Theorem]{Conjecture} \newtheorem{Proposition}[Theorem]{Proposition} \newtheorem{Setup}[Theorem]{Setup} \newtheorem{Example}[Theorem]{Example} \newtheorem{manualtheoreminner}{Theorem} \newenvironment{manualtheorem}[1]{% \renewcommand\themanualtheoreminner{#1}% \manualtheoreminner }{\endmanualtheoreminner} \newtheorem{Question}[Theorem]{Question} \theoremstyle{definition} \newtheorem{Definition}[Theorem]{Definition} %\theoremstyle{remark} \renewcommand{\thetable}{\arabic{section}.\arabic{Theorem}} %\usepackage{refcheck} \numberwithin{equation}{section} \hyphenation{Woj-ciech} %opening \begin{document} \title[The de Rham...]{?? The de Rham cohomology of covers with cyclic $p$-Sylow subgroup} \author[A. Kontogeorgis and J. Garnek]{Aristides Kontogeorgis and J\k{e}drzej Garnek} \address{???} \email{jgarnek@amu.edu.pl} \subjclass[2020]{Primary 14G17, Secondary 14H30, 20C20} \keywords{de~Rham cohomology, algebraic curves, group actions, characteristic~$p$} \urladdr{http://jgarnek.faculty.wmi.amu.edu.pl/} \date{} \begin{abstract} ???? \end{abstract} \maketitle \bibliographystyle{plain} % \section{} % \section{Cyclic covers} % Let for any $\ZZ/p^n$-cover $X \to Y$ % \begin{align*} u_{X/Y, P}^{(t)} &:= \min \{ t \ge 0 : G_P^{(t)} \cong \ZZ/p^{n-t???} \},\\ l_{X/Y, P}^{(t)} &:= \min \{ t \ge 0 : G_{P, t} \cong \ZZ/p^{n-t???} \}. \end{align*} % Note that if $G_P = \ZZ/p^n$, this coincides with the standard definition of the $t$th upper (resp. lower) ramification jump of $X \to Y$ at $P$. % \begin{Theorem} Suppose that $\pi : X \to Y$ is a $\ZZ/p^n$-cover. Let $\langle G_P : P \in X(k) \rangle = \ZZ/p^m = G_{P_0}$ for $P_0 \in X(k)$. Then, as $k[\ZZ/p^n]$-modules: % \[ H^1_{dR}(X) \cong J_{p^n}^{2 (g_Y - 1)} \oplus J_{p^n - p^{n-m} + 1}^2 \oplus \bigoplus_{P \neq P_0} J_{p^n - \frac{p^n}{e_{X/Y, P}}}^2 \oplus \bigoplus_P \bigoplus_{t = 0}^{n-1} J_{p^n - p^t}^{u_{X/Y, P}^{(t+1)} - u_{X/Y, P}^{(t)}}. \] \end{Theorem} % Write $H := \ZZ/p^n = \langle \sigma \rangle$. For any $k[H]$-module $M$ denote: % \begin{align*} M^{(i)} &:= \ker ((\sigma - 1)^i : M \to M),\\ T^i M &= T^i_H M := M^{(i)}/M^{(i-1)} \quad \textrm{ for } i = 1, \ldots, p^n. \end{align*} % Recall that $\dim_k T^i M$ determines the structure of $M$ completely (cf. ????). In the inductive step we use also the group $\ZZ/p^{n-1}$. In this case we denote the irreducible $k[\ZZ/p^{n-1}]$-modules by $\mc J_1, \ldots, \mc J_{p^{n-1}}$ and $\mc T^i M := T^i_{\ZZ/p^{n-1}} M$ for any $k[\ZZ/p^{n-1}]$-module $M$. Note also that for $j \ge 1$: % \[ l_{X/Y, P}^{(j)} - l_{X/Y, P}^{(j-1)} = \frac{1}{p^{j-1}} (u_{X/Y, P}^{(j)} - u^{(j-1)}_{X/Y, P}) \] % (in particular, $u_{X/Y, P}^{(1)} = l_{X/Y, P}^{(1)}$). Moreover, if $X' \to Y$ is the $\ZZ/p^N$-subcover of $X \to Y$ for $N \le n$ then: % \begin{itemize} \item $u_{X'/Y, P}^{(t)} = u_{X'/Y, P}^{(t)}$ for $t \le N$, \item $l_{X/X', P}^{(t)} = l_{X/X', P}^{(t + N)}$ for $t \le n-N$. \end{itemize} \begin{Lemma} If the $G$-cover $X \to Y$ is \'{e}tale, then the natural map % \[ H^1_{dR}(Y) \to H^1_{dR}(X)^G \] % is an isomorphism. \end{Lemma} \begin{proof} ???? \end{proof} % \begin{Lemma} If the $G$-cover $X \to Y$ is totally ramified, then the map % \[ \tr_{X/Y} : H^1_{dR}(X) \to H^1_{dR}(Y) \] % is an epimorphism. \end{Lemma} \begin{proof} ???? \end{proof} % \begin{proof}[Proof of Theorem ????] We use the following notation: $H' := \langle \sigma^p \rangle \cong \ZZ/p^{n-1}$, $H'' := H/\langle \sigma^{p^{n-1}} \rangle \cong \ZZ/p^{n-1}$, $Y' := X/H'$, $X'' := X/H''$. Write also $M := H^1_{dR}(X)$. By induction hypothesis for $H'$ acting on $X$, we have the following isomorphism of $k[H']$-modules: % \[ M \cong \mc J_{p^{n-1}}^{2 (g_{Y'} - 1)} \oplus \mc J_{p^{n-1} - p^{n - 1 -m'} + 1}^2 \oplus \bigoplus_{P \neq P_0} \mc J_{p^n - \frac{p^{n-1}}{e_{X/Y', P}}}^2 \oplus \bigoplus_P \bigoplus_{t = 0}^{n-1} \mc J_{p^n - p^t}^{u_{X/Y', P}^{(t+1)} - u_{X/Y', P}^{(t)}} \] % where % \[ m' := \begin{cases} n-1, & \textrm{ if } m = n,\\ n, & \textrm{ otherwise.} \end{cases} \] Therefore, for $???$ % \begin{align*} \dim_k \mc T^i M = \begin{cases} ???, \end{cases} \end{align*} \end{proof} \bibliography{bibliografia} \end{document}