576 lines
22 KiB
TeX
576 lines
22 KiB
TeX
% !TeX spellcheck = en_GB
|
|
\RequirePackage[l2tabu, orthodox]{nag}
|
|
\documentclass[a4paper,12pt]{amsart}
|
|
%\usepackage[margin=32mm,bottom=40mm]{geometry}
|
|
%\renewcommand{\baselinestretch}{1.1}
|
|
\usepackage{microtype}
|
|
\usepackage[charter]{mathdesign}
|
|
\let\circledS\undefined
|
|
%
|
|
\usepackage[T1]{fontenc}
|
|
\usepackage{tikz, tikz-cd, stmaryrd, amsmath, amsthm, amssymb,
|
|
hyperref, bbm, mathtools, mathrsfs}
|
|
%\usepackage{upgreek}
|
|
\newcommand{\upomega}{\boldsymbol{\omega}}
|
|
\newcommand{\upeta}{\boldsymbol{\eta}}
|
|
\newcommand{\dd}{\boldsymbol{d}}
|
|
\usepackage[shortlabels]{enumitem}
|
|
\usetikzlibrary{arrows}
|
|
\usetikzlibrary{positioning}
|
|
\usepackage[utf8x]{inputenc}
|
|
% \usepackage[MeX]{polski}
|
|
\newcommand{\bb}{\textbf}
|
|
\newcommand{\uu}{\underline}
|
|
\newcommand{\ol}{\overline}
|
|
\newcommand{\mc}{\mathcal}
|
|
\newcommand{\wh}{\widehat}
|
|
\newcommand{\wt}{\widetilde}
|
|
\newcommand{\mf}{\mathfrak}
|
|
\newcommand{\ms}{\mathscr}
|
|
\newcommand{\red}[1]{{\color{red}#1}}
|
|
\renewcommand{\AA}{\mathbb{A}}
|
|
\newcommand{\II}{\mathbb{I}}
|
|
\newcommand{\HH}{\mathbb{H}}
|
|
\newcommand{\ZZ}{\mathbb{Z}}
|
|
\newcommand{\CC}{\mathbb{C}}
|
|
\newcommand{\RR}{\mathbb{R}}
|
|
\newcommand{\PP}{\mathbb{P}}
|
|
\newcommand{\QQ}{\mathbb{Q}}
|
|
\newcommand{\LL}{\mathbb{L}}
|
|
\newcommand{\NN}{\mathbb{N}}
|
|
\newcommand{\FF}{\mathbb{F}}
|
|
\newcommand{\VV}{\mathbb{V}}
|
|
\newcommand{\ddeg}{\textbf{deg}\,}
|
|
\DeclareMathOperator{\SSh}{-Sh}
|
|
\DeclareMathOperator{\Ind}{Ind}
|
|
\DeclareMathOperator{\pr}{pr}
|
|
\DeclareMathOperator{\tr}{tr}
|
|
\DeclareMathOperator{\Sh}{Sh}
|
|
\DeclareMathOperator{\diag}{diag}
|
|
\DeclareMathOperator{\sgn}{sgn}
|
|
\DeclareMathOperator{\Divv}{Div}
|
|
\DeclareMathOperator{\Coind}{Coind}
|
|
\DeclareMathOperator{\coker}{coker}
|
|
\DeclareMathOperator{\im}{im}
|
|
\DeclareMathOperator{\id}{id}
|
|
\DeclareMathOperator{\Tot}{Tot}
|
|
\DeclareMathOperator{\Span}{Span}
|
|
\DeclareMathOperator{\res}{res}
|
|
\DeclareMathOperator{\Gl}{Gl}
|
|
\DeclareMathOperator{\Sl}{Sl}
|
|
\DeclareMathOperator{\GCD}{GCD}
|
|
\DeclareMathOperator{\ord}{ord}
|
|
\DeclareMathOperator{\Spec}{Spec}
|
|
\DeclareMathOperator{\rank}{rank}
|
|
\DeclareMathOperator{\Gal}{Gal}
|
|
\DeclareMathOperator{\Proj}{Proj}
|
|
\DeclareMathOperator{\Ext}{Ext}
|
|
\DeclareMathOperator{\Hom}{Hom}
|
|
\DeclareMathOperator{\End}{End}
|
|
\DeclareMathOperator{\cha}{char}
|
|
\DeclareMathOperator{\Cl}{Cl}
|
|
\DeclareMathOperator{\Jac}{Jac}
|
|
\DeclareMathOperator{\Lie}{Lie}
|
|
\DeclareMathOperator{\GSp}{GSp}
|
|
\DeclareMathOperator{\Sp}{Sp}
|
|
\DeclareMathOperator{\Sym}{Sym}
|
|
\DeclareMathOperator{\qlog}{qlog}
|
|
\DeclareMathOperator{\Aut}{Aut}
|
|
\DeclareMathOperator{\divv}{div}
|
|
\DeclareMathOperator{\mmod}{-mod}
|
|
\DeclareMathOperator{\ev}{ev}
|
|
\DeclareMathOperator{\Indec}{Indec}
|
|
\DeclareMathOperator{\pole}{pole}
|
|
\theoremstyle{plain}
|
|
\newtheorem{Theorem}{Theorem}[section]
|
|
\newtheorem*{mainthm}{Main Theorem}
|
|
\newtheorem{Remark}[Theorem]{Remark}
|
|
\newtheorem{Lemma}[Theorem]{Lemma}
|
|
\newtheorem{Corollary}[Theorem]{Corollary}
|
|
\newtheorem{Conjecture}[Theorem]{Conjecture}
|
|
\newtheorem{Proposition}[Theorem]{Proposition}
|
|
\newtheorem{Setup}[Theorem]{Setup}
|
|
\newtheorem{Example}[Theorem]{Example}
|
|
\newtheorem{manualtheoreminner}{Theorem}
|
|
\newenvironment{manualtheorem}[1]{%
|
|
\renewcommand\themanualtheoreminner{#1}%
|
|
\manualtheoreminner
|
|
}{\endmanualtheoreminner}
|
|
\newtheorem{Question}[Theorem]{Question}
|
|
|
|
\theoremstyle{definition}
|
|
\newtheorem{Definition}[Theorem]{Definition}
|
|
|
|
%\theoremstyle{remark}
|
|
|
|
|
|
|
|
\renewcommand{\thetable}{\arabic{section}.\arabic{Theorem}}
|
|
|
|
%\usepackage{refcheck}
|
|
\numberwithin{equation}{section}
|
|
\hyphenation{Woj-ciech}
|
|
%opening
|
|
\begin{document}
|
|
|
|
\title[The de Rham...]{?? The de Rham cohomology of covers\\ with cyclic $p$-Sylow subgroup}
|
|
\author[A. Kontogeorgis and J. Garnek]{Aristides Kontogeorgis and J\k{e}drzej Garnek}
|
|
\address{???}
|
|
\email{jgarnek@amu.edu.pl}
|
|
\subjclass[2020]{Primary 14G17, Secondary 14H30, 20C20}
|
|
\keywords{de~Rham cohomology, algebraic curves, group actions,
|
|
characteristic~$p$}
|
|
\urladdr{http://jgarnek.faculty.wmi.amu.edu.pl/}
|
|
\date{}
|
|
|
|
\begin{abstract}
|
|
????
|
|
\end{abstract}
|
|
|
|
\maketitle
|
|
\bibliographystyle{plain}
|
|
%
|
|
\section{Introduction}
|
|
%
|
|
\begin{mainthm}
|
|
Suppose that $G$ is a group with a $p$-cyclic Sylow subgroup.
|
|
Let $X$ be a curve with an action of~$G$ over a field $k$ of characteristic $p$.
|
|
The $k[G]$-module structure of $H^1_{dR}(X)$ is uniquely determined by the lower ramification groups and the fundamental characters of closed
|
|
points $x$ of $X$ that are ramified in the cover $X \to X/G$.
|
|
\end{mainthm}
|
|
%
|
|
Note that if $p > 2$ and the $p$-Sylow subgroup of $G$ is not cyclic, the structure
|
|
of $H^1_{dR}(X)$ isn't determined uniquely by the ramification data, see \cite{??Garnek_indecomposables}.
|
|
|
|
\section{Cyclic covers}
|
|
%
|
|
\red{For any $\ZZ/p^n$-cover $\pi : X \to Y$ and $P \in X(k)$ write $u_{X/Y, P}^{(t)}$ (resp. $l_{X/Y, P}^{(t)}$) for the $t$th ramification jump at $P$.}
|
|
We use also the convention $u^{(0)}_{X/Y, P} = 1$ and $u^{(t)}_{X/Y, P} := u^{(m)}_{X/Y, P}$, if $p^t \ge |G_P| = p^m$.
|
|
By Hasse--Arf theorem (cf. ???), the numbers $u_{X/Y, P}^{(t)}$ are integers. Define $n_{X/Y, P}$
|
|
by the equality $e_{X/Y, P} = p^{n_{X/Y, P}}$.
|
|
\red{For any $Q \in Y(k)$ we denote also $G_Q := G_P$, $e_{X/Y, Q} := e_{X/Y, P}$,
|
|
$u_{X/Y, Q}^{(t)} := u_{X/Y, P}^{(t)}$ etc. for arbitrary $P \in \pi^{-1}(Q)$.}
|
|
%
|
|
\begin{Theorem} \label{thm:cyclic_de_rham}
|
|
Suppose that $\pi : X \to Y$ is a $\ZZ/p^n$-cover. Let $m := \max \{ n_{X/Y, P} : P \in X(k) \}$. Pick arbitrary $Q_0 \in Y(k)$ with $n_{X/Y, Q_0} = m$. Then, as $k[\ZZ/p^n]$-modules:
|
|
%
|
|
\[
|
|
H^1_{dR}(X) \cong J_{p^n}^{2 (g_Y - 1)} \oplus J_{p^n - p^{n-m} + 1}^2 \oplus \bigoplus_{\red{\substack{Q \in Y(k)\\ Q \neq Q_0}}} J_{p^n - p^n/e_{\red{Q}}}^2
|
|
\oplus \bigoplus_{\red{Q \in Y(k)}} \bigoplus_{t \ge 0} J_{\red{p^n - p^{n+t}/e_Q}}^{u_Q^{(t+1)} - u_Q^{(t)}},
|
|
\]
|
|
%
|
|
where $e_Q := e_{X/Y, Q}$ and $u_Q^{(t)} := u_{X/Y, Q}^{(t)}$.
|
|
\end{Theorem}
|
|
%
|
|
Write $H := \langle \sigma \rangle \cong \ZZ/p^n$.
|
|
For any $k[H]$-module $M$ denote:
|
|
%
|
|
\begin{align*}
|
|
M^{(i)} &:= \ker ((\sigma - 1)^i : M \to M),\\
|
|
T^i M &= T^i_H M := M^{(i)}/M^{(i-1)} \quad \textrm{ for } i = 1, \ldots, p^n.
|
|
\end{align*}
|
|
%
|
|
Recall that $\dim_k T^i M$ determines the structure of $M$ completely (cf. ????).
|
|
In the inductive step we use also the group $H' := \ZZ/p^{n-1}$. In this case
|
|
we denote the indecomposable $k[H']$-modules by $\mc J_1, \ldots, \mc J_{p^{n-1}}$
|
|
and $\mc T^i M := T^i_{H'} M$ for any $k[H']$-module $M$.\\
|
|
|
|
\noindent \red{Recall also that by \cite[???]{Serre1979} there exist integers $i_{X/Y, P}^{(0)}, i_{X/Y, P}^{(1)}, \ldots$ such that:
|
|
%
|
|
\begin{align*}
|
|
u_{X/Y, P}^{(t)} &= i_{X/Y, P}^{(0)} + i_{X/Y, P}^{(1)} + \ldots + i_{X/Y, P}^{(t-1)}\\
|
|
l_{X/Y, P}^{(t)} &= i_{X/Y, P}^{(0)} + i_{X/Y, P}^{(1)} \cdot p + \ldots + i_{X/Y, P}^{(t-1)} \cdot p^{t-1}.
|
|
\end{align*}
|
|
%
|
|
Moreover, if $X' \to Y$ is the $\ZZ/p^N$-subcover of $X \to Y$ for $N \le n$ and $P'$ is the image of $P \in X(k)$ on $X'$ then:
|
|
%
|
|
\begin{align*}
|
|
i_{X/X', P}^{(t)} &=
|
|
\begin{cases}
|
|
i_{X/Y, P}^{(0)} + i_{X/Y, P}^{(1)} \cdot p + \ldots + i_{X/Y, P}^{(N)} \cdot p^N, & t = 0\\
|
|
p^N \cdot i_{X/Y, P}^{(N+t)}, & t = 1, \ldots, n-N-1.
|
|
\end{cases}\\
|
|
i_{X'/Y, P'}^{(t)} &= i_{X/Y, P}^{(t)} \qquad \textrm{ for } t < N.
|
|
\end{align*}
|
|
}
|
|
%
|
|
\begin{Lemma} \label{lem:G_invariants_\'{e}tale}
|
|
If the $G$-cover $X \to Y$ is \'{e}tale, then
|
|
%
|
|
\[
|
|
\red{\dim_k H^1_{dR}(X)^G = 2g_Y.}
|
|
\]
|
|
%
|
|
\end{Lemma}
|
|
\begin{proof}
|
|
Let $\HH^i(Y, \mc F^{\bullet})$ be the $i$th hypercohomology of a complex $\mc F^{\bullet}$.
|
|
Write also $\mc H^i(G, -)$ for the $i$th derived functor of the functor
|
|
%
|
|
\[
|
|
\mc F \mapsto \mc F^G.
|
|
\]
|
|
%
|
|
Since $X \to Y$ is \'{e}tale, $\mc H^i(G, \pi_* \mc F) = 0$ for any $i > 0$ and any coherent sheaf $\mc F$ on $X$ by \cite[Proposition~2.1]{Garnek_equivariant}.
|
|
Therefore the spectral sequence~\cite[(3.4)]{Garnek_equivariant} applied for the complex $\mc F^{\bullet} := \pi_* \Omega_{X/k}^{\bullet}$ yields $\RR^i \Gamma^G(\pi_* \Omega_{X/k}^{\bullet}) = \HH^1(Y, \pi_*^G \Omega_{X/k}^{\bullet}) = H^1_{dR}(Y)$, since $\pi_*^G \Omega_X^{\bullet} \cong \Omega_Y$ (cf. ???).
|
|
On the other hand, the seven-term exact sequence applied for the spectral sequence~\cite[(3.5)]{Garnek_equivariant} yields:
|
|
%
|
|
\begin{align*}
|
|
0 \to H^1(G, H^0_{dR}(X)^G) \to H^1_{dR}(Y) \to H^1_{dR}(X)^G \to H^2(G, H^0_{dR}(X)^G) \to K,
|
|
\end{align*}
|
|
%
|
|
where:
|
|
%
|
|
\[
|
|
K := \ker(H^2_{dR}(Y) \to H^2_{dR}(X)^G) = \ker(k \stackrel{\id}{\rightarrow} k) = 0.
|
|
\]
|
|
%
|
|
Therefore, since $H^0_{dR}(X)^G \cong k$:
|
|
%
|
|
\begin{align*}
|
|
\dim_k H^1_{dR}(X)^G = \dim_k H^1_{dR}(Y) - \dim_k H^1(G, k) + \dim_k H^2(G, k)\\
|
|
= 2g_Y - \dim_k H^1(G, k) + \dim_k H^2(G, k) ????.
|
|
\end{align*}
|
|
\end{proof}
|
|
%
|
|
\begin{Lemma} \label{lem:trace_surjective}
|
|
Suppose that $G$ is a $p$-group.
|
|
If the $G$-cover $X \to Y$ is totally ramified, then the map
|
|
%
|
|
\[
|
|
\tr_{X/Y} : H^1_{dR}(X) \to H^1_{dR}(Y)
|
|
\]
|
|
%
|
|
is an epimorphism.
|
|
\end{Lemma}
|
|
\begin{proof}
|
|
%
|
|
By induction, it suffices to prove this in the case when $G = \ZZ/p$.
|
|
Consider the following commutative diagram:
|
|
%
|
|
\begin{center}
|
|
% https://tikzcd.yichuanshen.de/#N4Igdg9gJgpgziAXAbVABwnAlgFyxMJZABgBpiBdUkANwEMAbAVxiRGJAF9T1Nd9CKMgEYqtRizYduvbHgJFh5MfWatEIABIA9YgAoAGqQAEAHVMB5ALYwA5nQD6BgJRceIDHIGLSo6qskNHX0ATRNzaztHENcZDz55QWQAJmV-CXUtbWEHYCgAJU5DWPdPfgUUVL9xNTYdHLzCvRi3WXKkgGY0msCs4UNw0ysAY2MLJxK2xKIu6oDM+ubBkbGHFriy6ZQAFm75qVb4rwrkXbmMg84xGChbeCJQADMAJwgrJDIQHAgkZLiXt6-ajfJDbf6vd6IXZfH6IABs4MB8OBsIAHIjIQB2FFIACcGKQAFYcYhMQTEF0YUTyUoqRTyak6ZT9hpzDhnrkDAB6EKcQ4AyHQkGIYk9TJsjnAbm8-kQpBwknYsVsCWcnl8q6cIA
|
|
\begin{tikzcd}
|
|
0 \arrow[r] & {H^0(X, \Omega_X)} \arrow[r] \arrow[d, "\tr_{X/Y}"] & H^1_{dR}(X) \arrow[r] \arrow[d, "\tr_{X/Y}"] & {H^1(X, \mc O_X)} \arrow[r] \arrow[d, "\tr_{X/Y}"] & 0 \\
|
|
0 \arrow[r] & {H^0(Y, \Omega_Y)} \arrow[r] & H^1_{dR}(Y) \arrow[r] & {H^1(Y, \mc O_Y)} \arrow[r] & 0
|
|
\end{tikzcd}
|
|
\end{center}
|
|
%
|
|
where the rows are Hodge--de Rham exact sequences. Recall that by~\cite[Theorem~1]{Valentini_Madan_Automorphisms}, in this case $H^0(X, \Omega_X)$ contains
|
|
a copy of $k[G]^{\oplus g_Y}$ as a direct summand. Thus, since trace is injective on $k[G]^{\oplus g_Y}$, the dimension
|
|
of the image of
|
|
%
|
|
\begin{equation} \label{eqn:trace_H0_Omega}
|
|
\tr_{X/Y} : H^0(X, \Omega_X) \to H^0(Y, \Omega_Y)
|
|
\end{equation}
|
|
%
|
|
is $g_Y$. Therefore the map~\eqref{eqn:trace_H0_Omega} is surjective.
|
|
Similarly, by Serre's duality, also $H^1(X, \mc O_X)$ contains $k[G]^{\oplus g_Y}$ as a direct summand
|
|
and one shows similarly that the trace map
|
|
%
|
|
\begin{equation*} %\label{eqn:trace_H0_Omega}
|
|
\tr_{X/Y} : H^1(X, \mc O_X) \to H^1(Y, \mc O_Y)
|
|
\end{equation*}
|
|
%
|
|
is surjective. Therefore, since the outer vertical maps in the diagram are surjective,
|
|
the trace map on the de Rham cohomology must be surjective as well.
|
|
%
|
|
\end{proof}
|
|
%
|
|
\begin{Lemma} \label{lem:TiM_isomorphism}
|
|
For any $i \le p^n - 1$ we have the following $k$-linear monomorphism:
|
|
%
|
|
\[
|
|
m_{\sigma - 1} : T^{i+1} M \hookrightarrow T^i M.
|
|
\]
|
|
\end{Lemma}
|
|
\begin{proof}
|
|
%
|
|
We define $m_{\sigma - 1}$ as follows:
|
|
%
|
|
\[
|
|
m_{\sigma - 1}(\ol x) := (\sigma - 1) \cdot x,
|
|
\]
|
|
%
|
|
where for $\ol x \in T^{i+1} M$ we picked any representative $x \in M^{(i+1)}$.
|
|
Indeed, if $x \in M^{(i+1)}$ then clearly $(\sigma - 1) \cdot x \in M^{(i)}$.
|
|
Moreover $(\sigma - 1) \cdot x \in M^{(i-1)}$ holds if and only if $x \in M^{(i)}$. This
|
|
shows that $m_{\sigma - 1}$ is well-defined and injective.
|
|
\end{proof}
|
|
%
|
|
\begin{Lemma} \label{lem:lemma_mcT_and_T}
|
|
Let $M$ be a $k[H]$-module. Let $T^i M$ and $\mc T^i M$ be as above.
|
|
If $\dim_k \mc T^i M = \dim_k \mc T^{i+1} M$ for some $i$ then:
|
|
%
|
|
\[
|
|
\dim_k T^{pi + p} M = \dim_k T^{pi + p - 1} M = \ldots = \dim_k T^{pi - p + 1} M.
|
|
\]
|
|
\end{Lemma}
|
|
\begin{proof}
|
|
Note that $\mc T^i M = M^{(pi)}/M^{(pi - p)}$. This easily implies that:
|
|
%
|
|
\begin{align*}
|
|
\dim_k \mc T^i M &= \dim_k T^{pi} M + \ldots + \dim_k T^{pi - p + 1} M\\
|
|
&\ge \dim_k T^{pi+p} M + \ldots + \dim_k T^{pi+1} M
|
|
= \dim_k \mc T^{i+1} M.
|
|
\end{align*}
|
|
%
|
|
Since the left-hand side and right hand side are equal, we conclude by Lemma~\ref{lem:TiM_isomorphism}
|
|
\end{proof}
|
|
%
|
|
\begin{Lemma} \label{lem:u_equals_ul}
|
|
For any $Q \in Y(k)$:
|
|
%
|
|
\[
|
|
p \cdot (u^{(n_Q)}_{X/Y, Q} - 1) = \sum_{Q'} \left( (u^{(n_{Q'})}_{X/Y', Q'} - 1) + (p-1) \cdot (l^{(1)}_{Y'/Y, Q'} + 1) \right),
|
|
\]
|
|
%
|
|
where we sum over points $Q' \in Y'(k)$ lying above $Q$ and $n_Q := n_{X/Y, Q}$, $n_{Q'} := n_{X/Y', Q'}$.
|
|
\end{Lemma}
|
|
\begin{proof}
|
|
????
|
|
\end{proof}
|
|
|
|
\begin{proof}[Proof of Theorem~\ref{thm:cyclic_de_rham}]
|
|
We use the following notation: $H' := \langle \sigma^p \rangle \cong \ZZ/p^{n-1}$,
|
|
$H'' := H/\langle \sigma^{p^{n-1}} \rangle \cong \ZZ/p^{n-1}$, $Y' := X/H'$, $X'' := X/\langle \sigma^{p^{n-1}} \rangle$. Note that $H''$ naturally acts on $X''$.
|
|
Write also $\mc M := H^1_{dR}(X)$.
|
|
We consider now two cases. If the cover $X \to Y$ is \'{e}tale, then by induction assumption, since $2(g_{Y'} - 1) = p \cdot 2 \cdot (g_Y - 1)$:
|
|
%
|
|
\[
|
|
\mc M \cong \mc J_{p^{n-1}}^{2 p \cdot (g_Y - 1)} \oplus k^{\oplus 2}.
|
|
\]
|
|
%
|
|
Therefore $\dim_k \mc T^2 \mc M = \ldots = \dim_k \mc T^{p^{n-1}} \mc M = 2 p (g_Y - 1)$,
|
|
which by Lemma~\ref{lem:lemma_mcT_and_T} implies that
|
|
%
|
|
\[
|
|
\dim_k T^p \mc M = \ldots = \dim_k T^{p^n} \mc M = 2(g_Y - 1).
|
|
\]
|
|
%
|
|
Thus, for $i = 2, \ldots, p$:
|
|
%
|
|
\[
|
|
\dim_k T^i \mc M \ge 2(g_Y - 1) = \dim_k T^{p+1} \mc M.
|
|
\]
|
|
%
|
|
On the other hand, by Lemma~\ref{lem:G_invariants_\'{e}tale} we have
|
|
%
|
|
$
|
|
\dim_k T^1 \mc M = 2 g_Y
|
|
$. Thus:
|
|
%
|
|
\begin{align*}
|
|
\sum_{i = 2}^p \dim_k T^i \mc M = 2g_X - \dim_k T^1 \mc M - \sum_{i = p+1}^{p^n} \dim_k T^i \mc M = (p-1) \cdot 2(g_Y - 1).
|
|
\end{align*}
|
|
%
|
|
Thus $\dim_k T^i \mc M = 2(g_Y - 1)$ for every $i \ge 2$, which ends the proof in this case.
|
|
|
|
Assume now that $X \to Y$ is not \'{e}tale. Therefore $X \to X''$ is also not \'{e}tale.
|
|
By induction hypothesis for $H'$ acting on $X$, we have the following isomorphism of $k[H']$-modules:
|
|
%
|
|
\[
|
|
\mc M \cong \mc J_{p^{n-1}}^{2 (g_{Y'} - 1)} \oplus \mc J_{p^{n-1} - p^{n - m} + 1}^2 \oplus \bigoplus_{\substack{Q \in Y'(k)\\Q \neq Q_1}} \mc J_{p^{n-1} - p^{n-1}/e'_Q}^2
|
|
\oplus \bigoplus_{Q \in Y'(k)} \bigoplus_{t = 0}^{n-2} \mc J_{p^n - p^t}^{u_{X/Y', Q}^{(t+1)} - u_{X/Y', Q}^{(t)}}
|
|
\]
|
|
%
|
|
where $e'_Q := e_{X/Y', Q}$ and $Q_1 \in \pi^{-1}(Q_0)$. Therefore, for $i \le p^{n-1} - p^{n-2}$, using the Riemann--Hurwitz formula (cf. ????) and Lemma~\ref{lem:u_equals_ul}:
|
|
%
|
|
\begin{align*}
|
|
\dim_k \mc T^i \mc M &=
|
|
2(g_{Y'} - 1) + 2 + 2(\# R - 1) + \sum_{Q' \in Y'(k)} (u_{X/Y', Q'}^{(n_{Q'})} - 1)\\
|
|
&= 2 p (g_Y - 1) + \sum_{Q' \in Y'(k)} (p-1) \cdot (l_{Y'/Y, Q'}^{(1)} + 1)\\
|
|
&+ 2 + 2(\# R - 1) + \sum_{Q' \in Y'(k)} (u_{X/Y', Q'}^{(n_{Q'})} - 1)\\
|
|
&= p \cdot \left( 2(g_Y - 1) + 2 + 2(\# R - 1) + \sum_{Q' \in Y(k)} (u_{X/Y, Q'}^{(n_Q)} - 1) \right)
|
|
\end{align*}
|
|
%
|
|
where
|
|
%
|
|
\[ R := \{ P \in X(k) : e_P > 1 \} = \{ P \in X(k) : e'_P > 1 \}. \]
|
|
%
|
|
In particular, $\dim_k \mc T^1 \mc M = \ldots = \dim_k \mc T^{p^{n-1} - p^{n-2}} \mc M$.
|
|
Thus by Lemma~\ref{lem:lemma_mcT_and_T}
|
|
%
|
|
\begin{align*}
|
|
\dim_k T^1 \mc M &= \ldots = \dim_k T^{p^n - p^{n-1}} \mc M = \frac{1}{p} \dim_k \mc T^1 \mc M\\
|
|
&= 2(g_Y - 1) + 2 + 2(\# R - 1) + \sum_{Q \in Y(k)} (u_{X/Y, P}^{(n_Q)} - 1).
|
|
\end{align*}
|
|
%
|
|
By Lemma~\ref{lem:trace_surjective} since $X \to X''$ is not \'{e}tale, the map $\tr_{X/X''} : H^1_{dR}(X) \to H^1_{dR}(X'')$ is surjective. Recall that
|
|
in $\FF_p[x]$ we have the identity:
|
|
%
|
|
\[
|
|
1 + x + \ldots + x^{p-1} = (x - 1)^{p-1}.
|
|
\]
|
|
%
|
|
Therefore in the group ring $k[H]$ we have:
|
|
%
|
|
\[
|
|
\tr_{X/X''} = \sum_{j = 0}^{p-1} (\sigma^{p^{n-1}})^j = (\sigma^{p^{n-1}} - 1)^{p-1} =
|
|
(\sigma - 1)^{p^n - p^{n-1}}.
|
|
\]
|
|
%
|
|
This implies that:
|
|
%
|
|
\[
|
|
\ker(\tr_{X/X''} : \mc M \to \mc M'') = \mc M^{(p^n - p^{n-1})}
|
|
\]
|
|
%
|
|
and that $\tr_{X/X''}$ induces a $k$-linear isomorphism $T^{i + p^n - p^{n-1}} \mc M \to \mc T^i \mc M''$ for any $i \ge 1$. Thus:
|
|
%
|
|
\[
|
|
\dim_k T^{i + p^n - p^{n-1}} \mc M = \dim_k \mc T^i \mc M'' = ....
|
|
\]
|
|
%
|
|
This ends the proof.
|
|
\end{proof}
|
|
|
|
\section{Hypoelementary covers}
|
|
%
|
|
Assume now that $G = H \rtimes_{\chi} C = \langle \sigma \rangle \rtimes_{\chi} \langle \rho \rangle \cong \ZZ/p^n \rtimes_{\chi} \ZZ/c$.
|
|
Let $X$ be a curve with an action of $G$ and write $Y := X/H$. For any $k[C]$-module $M$ and any character $\psi$ of $H$ we write $M^{\psi} := M \otimes_{k[C]} \psi$.
|
|
%
|
|
\begin{Proposition} \label{prop:main_thm_for_hypoelementary}
|
|
Main Theorem holds for a hypoelementary $G$ as above and $k = \ol k$.
|
|
\end{Proposition}
|
|
%
|
|
\begin{Lemma}
|
|
Let $M$ be a $k[G]$-module of finite dimension. The $k[G]$-structure of $M$
|
|
is uniquely determined by the $k[C]$-structure of $T^1 M, \ldots, T^{p^n} M$.
|
|
\end{Lemma}
|
|
\begin{proof}
|
|
See \cite[????]{Bleher_Chinburg_Kontogeorgis_Galois_structure} for a proof.
|
|
\end{proof}
|
|
%
|
|
\begin{Lemma} \label{lem:N+Nchi+...}
|
|
Keep the above notation. Let $M$, $N$ be $k[C]$-modules. Assume that
|
|
%
|
|
\[
|
|
M \cong N \oplus N^{\chi} \oplus \ldots \oplus N^{\chi^{p-1}}.
|
|
\]
|
|
%
|
|
Then $N$ is uniquely determined by $M$.
|
|
%If $p-1 | j$, then $N_1 \cong N_2^{\chi^i}$ for some $i$.
|
|
\end{Lemma}
|
|
\begin{proof}
|
|
Note that
|
|
%
|
|
\[
|
|
M \cong N^{\oplus 2} \oplus N^{\chi} \oplus N^{\chi^2} \oplus \ldots \oplus N^{\chi^{p-2}}.
|
|
\]
|
|
%
|
|
By tensoring this isomorphism by $\chi^i$ we obtain:
|
|
%
|
|
\begin{align*}
|
|
M^{\chi^i} \cong (N^{\chi^i})^{\oplus 2} \oplus N^{\chi^{i+1}} \oplus N^{\chi^{i+2}} \oplus \ldots \oplus N^{\chi^{i + p-2}}
|
|
\cong (N^{\chi^i})^{\oplus 2} \oplus \bigoplus_{\substack{j = 0\\j \neq i}}^{p-2} N^{\chi^j}
|
|
\end{align*}
|
|
%
|
|
for $i = 0, \ldots, p-2$. Therefore:
|
|
%
|
|
\begin{equation} \label{eqn:N+M=M}
|
|
N^{\oplus p} \oplus M^{\chi} \oplus M^{\chi^2} \oplus \ldots \oplus M^{\chi^{p-2}} \oplus
|
|
\cong M^{\oplus (p-1)}.
|
|
\end{equation}
|
|
%
|
|
Indeed, for the proof of~\eqref{eqn:N+M=M} note that
|
|
%
|
|
\begin{align*}
|
|
N^{\oplus p} &\oplus M^{\chi} \oplus M^{\chi^2} \oplus \ldots \oplus M^{\chi^{p-2}}
|
|
\cong N^{\oplus p} \oplus \bigoplus_{i = 1}^{p-2} \left((N^{\chi^i})^{\oplus 2}
|
|
\oplus \bigoplus_{\substack{j = 0\\j \neq i}}^{p-2} N^{\chi^j} \right)\\
|
|
&\cong \left( N^{\oplus 2} \oplus N^{\chi} \oplus N^{\chi^2} \oplus \ldots \oplus N^{\chi^{p-2}} \right)^{\oplus (p-1)}
|
|
\cong M^{\oplus (p-1)}.
|
|
\end{align*}
|
|
%
|
|
The isomorphism~\eqref{eqn:N+M=M} clearly proves the thesis.
|
|
\end{proof}
|
|
%
|
|
\begin{Lemma} \label{lem:TiM_isomorphism_hypoelementary}
|
|
For any $i \le p^n - 1$ the map~$m_{\sigma - 1}$ from Lemma~\ref{lem:TiM_isomorphism}
|
|
yields a $k[C]$-equivariant monomorphism:
|
|
%
|
|
\[
|
|
m_{\sigma - 1} : T^{i+1} M \hookrightarrow (T^i M)^{\chi^{-1}}.
|
|
\]
|
|
\end{Lemma}
|
|
\begin{proof}
|
|
By Lemma~\ref{lem:TiM_isomorphism} this map is injective. Thus it suffices to check that it is $k[C]$-equivariant.
|
|
Note that we have the following identity in the ring~$k[C]$:
|
|
%
|
|
\[
|
|
(\sigma - 1) \cdot \rho = \rho \cdot (\sigma^{\chi(\rho)^{-1}} - 1)
|
|
= \rho \cdot (\sigma - 1) \cdot (1 + \sigma + \sigma^2 + \ldots + \sigma^{\chi(\rho)^{-1} - 1})
|
|
\]
|
|
%
|
|
Note that $\sigma$ acts trivially on $T^i M$, so that for any $\ol x \in T^i M$:
|
|
%
|
|
\[
|
|
(1 + \sigma + \sigma^2 + \ldots + \sigma^{\chi(\rho)^{-1} - 1}) \cdot \ol x = \chi(\rho)^{-1} \cdot \ol x.
|
|
\]
|
|
%
|
|
This easily shows that
|
|
%
|
|
\[
|
|
m_{\sigma - 1}(\rho \cdot \ol x) = \chi(\rho)^{-1} \cdot \rho \cdot m_{\sigma - 1}(\ol x),
|
|
\]
|
|
%
|
|
which ends the proof.
|
|
%
|
|
\end{proof}
|
|
|
|
\begin{proof}[Proof of Proposition~\ref{prop:main_thm_for_hypoelementary}]
|
|
We prove this by induction on $n$. If $n = 0$, then it follows by Chevalley--Weil theorem.
|
|
Consider now two cases. Firstly, we assume that $X \to Y$ is \'{e}tale.
|
|
Recall that by proof of Theorem~\ref{thm:cyclic_de_rham}, the map $(\sigma - 1)$
|
|
is an isomorphism of $k$-vector spaces between $T^{i+1} \mc M$ and $T^i \mc M$ for
|
|
$i = 2, \ldots, p^n$. This yields an isomorphism of $k[C]$-modules for $i \ge 2$ by Lemma~\ref{lem:TiM_isomorphism_hypoelementary}:
|
|
%
|
|
\begin{equation} \label{eqn:TiM=T1M_chi_\'{e}tale}
|
|
T^i \mc M \cong (T^2 \mc M)^{\chi^{-i+2}}
|
|
\end{equation}
|
|
%
|
|
Observe that $\mc T^i \mc M$ has the filtration $\mc M^{(pi)} \supset \mc M^{(pi - 1)} \supset \ldots \supset \mc M^{(pi - p)}$ with subquotients $T^{pi} \mc M, \ldots, T^{pi - p} \mc M$.
|
|
Thus, since the category of $k[C]$-modules is semisimple:
|
|
%
|
|
\begin{align}
|
|
\mc T^1 \mc M &\cong T^1 \mc M \oplus T^2 \mc M \oplus (T^2 \mc M)^{\chi^{-1}} \oplus \ldots \oplus (T^2 \mc M)^{\chi^{-(p - 2)}} \label{eqn:decomposition_of_mc_T1}\\
|
|
\mc T^i \mc M &\cong T^2 \mc M \oplus \ldots \oplus (T^2 \mc M)^{\chi^{-(p-1)}} \quad \textrm{ for } 2 \le i \le p^n - p^{n-1}. \label{eqn:decomposition_of_mc_Ti}
|
|
\end{align}
|
|
%
|
|
Thus, since by induction hypothesis $\mc T^i \mc M$ is determined by ramification data,
|
|
we have by Lemma~\ref{lem:N+Nchi+...} and by~\eqref{eqn:decomposition_of_mc_Ti} that $T^2 \mc M$ is determined by ramification data.
|
|
Moreover, by induction hypothesis and \red{by~\eqref{eqn:decomposition_of_mc_T1}}, $T^1 \mc M$
|
|
is also determined by ramification data.
|
|
|
|
Assume now that $X \to Y$ is not \'{e}tale. Analogously as in the previous case, Lemma~\ref{lem:TiM_isomorphism_hypoelementary} and proof of Theorem~\ref{thm:cyclic_de_rham}
|
|
yield an isomorphism of $k[C]$-modules:
|
|
%
|
|
\begin{equation} \label{eqn:TiM=T1M_chi}
|
|
T^{i+1} \mc M \cong (T^1 \mc M)^{\chi^{-i}}
|
|
\end{equation}
|
|
%
|
|
for $i \le p^n - p^{n-1}$. Observe that $\mc T^i M$ has the filtration $\mc M^{(pi)} \supset \mc M^{(pi - 1)} \supset \ldots \supset \mc M^{(pi - p)}$ with subquotients $T^{pi} \mc M, \ldots, T^{pi - p + 1} \mc M$.
|
|
Thus, since the category of $k[C]$-modules is semisimple, for $i \le p^n - p^{n-1}$:
|
|
%
|
|
\begin{align*}
|
|
\mc T^i \mc M &\cong T^{pi - p + 1} \mc M \oplus \ldots \oplus T^{pi} \mc M\\
|
|
&\cong T^1 \mc M \oplus (T^1 \mc M)^{\chi^{-1}} \oplus \ldots \oplus
|
|
(T^1 \mc M)^{\chi^{-p}}.
|
|
\end{align*}
|
|
%
|
|
By induction assumption, the $k[C]$-module structure of $\mc T^i \mc M$ is uniquely determined by the ramification data. Thus, by Lemma~\ref{lem:N+Nchi+...} for $N := T^1 \mc M$ and by~\eqref{eqn:TiM=T1M_chi} the $k[C]$-structure of the modules $T^i \mc M$ is uniquely determined by the ramification data for $i \le p^n - p^{n-1}$.
|
|
By similar reasoning, $\tr_{X/X'}$ yields an isomorphism:
|
|
%
|
|
\[
|
|
T^{i + p^n - p^{n-1}} \mc M \cong (\mc T^i \mc M'')^{\chi^{-1??}}.
|
|
\]
|
|
%
|
|
Thus, by induction hypothesis for $\mc M''$, the $k[C]$-structure of $T^{i + p^n - p^{n-1}} \mc M$
|
|
is determined by ramification data as well.
|
|
\end{proof}
|
|
|
|
\section{Proof of Main Theorem}
|
|
%
|
|
(Conlon induction ???) (algebraic closure ???)
|
|
\bibliography{bibliografia}
|
|
\end{document} |