de_rham_cyclic/article_de_rham_cyclic.tex
2024-12-18 12:54:34 +01:00

985 lines
40 KiB
TeX

% !TeX spellcheck = en_GB
\RequirePackage[l2tabu, orthodox]{nag}
\documentclass[a4paper,12pt]{amsart}
%\usepackage[margin=32mm,bottom=40mm]{geometry}
%\renewcommand{\baselinestretch}{1.1}
\usepackage{microtype}
\usepackage[charter]{mathdesign}
\let\circledS\undefined
%
\usepackage[T1]{fontenc}
\usepackage{tikz, tikz-cd, stmaryrd, amsmath, amsthm, amssymb,
hyperref, bbm, mathtools, mathrsfs}
\usepackage[all]{xy}
%\usepackage{upgreek}
\newcommand{\upomega}{\boldsymbol{\omega}}
\newcommand{\upeta}{\boldsymbol{\eta}}
\newcommand{\dd}{\boldsymbol{d}}
\usepackage[shortlabels]{enumitem}
\usetikzlibrary{arrows}
\usetikzlibrary{positioning}
\usepackage[utf8x]{inputenc}
% \usepackage[MeX]{polski}
\newcommand{\bb}{\textbf}
\newcommand{\uu}{\underline}
\newcommand{\ol}{\overline}
\newcommand{\mc}{\mathcal}
\newcommand{\wh}{\widehat}
\newcommand{\wt}{\widetilde}
\newcommand{\mf}{\mathfrak}
\newcommand{\ms}{\mathscr}
\newcommand{\red}[1]{{\color{red}#1}}
\renewcommand{\AA}{\mathbb{A}}
\newcommand{\II}{\mathbb{I}}
\newcommand{\HH}{\mathbb{H}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\LL}{\mathbb{L}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\FF}{\mathbb{F}}
\newcommand{\VV}{\mathbb{V}}
\newcommand{\ddeg}{\textbf{deg}\,}
\DeclareMathOperator{\SSh}{-Sh}
\DeclareMathOperator{\Ind}{Ind}
\DeclareMathOperator{\pr}{pr}
\DeclareMathOperator{\tr}{tr}
\DeclareMathOperator{\Sh}{Sh}
\DeclareMathOperator{\diag}{diag}
\DeclareMathOperator{\sgn}{sgn}
\DeclareMathOperator{\Divv}{Div}
\DeclareMathOperator{\Coind}{Coind}
\DeclareMathOperator{\coker}{coker}
\DeclareMathOperator{\im}{im}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\Tot}{Tot}
\DeclareMathOperator{\Span}{Span}
\DeclareMathOperator{\res}{res}
\DeclareMathOperator{\Gl}{Gl}
\DeclareMathOperator{\Sl}{Sl}
\DeclareMathOperator{\GCD}{GCD}
\DeclareMathOperator{\ord}{ord}
\DeclareMathOperator{\Spec}{Spec}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\Gal}{Gal}
\DeclareMathOperator{\Proj}{Proj}
\DeclareMathOperator{\Ext}{Ext}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\End}{End}
\DeclareMathOperator{\cha}{char}
\DeclareMathOperator{\Cl}{Cl}
\DeclareMathOperator{\Jac}{Jac}
\DeclareMathOperator{\Lie}{Lie}
\DeclareMathOperator{\GSp}{GSp}
\DeclareMathOperator{\Sp}{Sp}
\DeclareMathOperator{\Sym}{Sym}
\DeclareMathOperator{\qlog}{qlog}
\DeclareMathOperator{\Aut}{Aut}
\DeclareMathOperator{\divv}{div}
\DeclareMathOperator{\mmod}{-mod}
\DeclareMathOperator{\ev}{ev}
\DeclareMathOperator{\Indec}{Indec}
\DeclareMathOperator{\pole}{pole}
\theoremstyle{plain}
\newtheorem{Theorem}{Theorem}[section]
\newtheorem*{mainthm}{Main Theorem}
\newtheorem{Remark}[Theorem]{Remark}
\newtheorem{Lemma}[Theorem]{Lemma}
\newtheorem{Corollary}[Theorem]{Corollary}
\newtheorem{Conjecture}[Theorem]{Conjecture}
\newtheorem{Proposition}[Theorem]{Proposition}
\newtheorem{Setup}[Theorem]{Setup}
\newtheorem{Example}[Theorem]{Example}
\newtheorem{manualtheoreminner}{Theorem}
\newenvironment{manualtheorem}[1]{%
\renewcommand\themanualtheoreminner{#1}%
\manualtheoreminner
}{\endmanualtheoreminner}
\newtheorem{Question}[Theorem]{Question}
\theoremstyle{definition}
\newtheorem{Definition}[Theorem]{Definition}
%\theoremstyle{remark}
\renewcommand{\thetable}{\arabic{section}.\arabic{Theorem}}
%\usepackage{refcheck}
\numberwithin{equation}{section}
\hyphenation{Woj-ciech}
%opening
\begin{document}
\title[The de Rham...]{The de Rham cohomology of covers\\ with cyclic $p$-Sylow subgroup}
\author[A. Kontogeorgis and J. Garnek]{Aristides Kontogeorgis and J\k{e}drzej Garnek}
\address{???}
\email{jgarnek@amu.edu.pl}
\subjclass[2020]{Primary 14G17, Secondary 14H30, 20C20}
\keywords{de~Rham cohomology, algebraic curves, group actions,
characteristic~$p$}
\urladdr{http://jgarnek.faculty.wmi.amu.edu.pl/}
\date{}
\begin{abstract}
????
\end{abstract}
\maketitle
\bibliographystyle{plain}
%
\section{Introduction}
%
The classical Chevalley--Weil formula
(cf. \cite{Chevalley_Weil_Uber_verhalten},
{\color{red}
\cite{Ellingsrud_Lonsted_Equivariant_Lefschetz})
}
gives an explicit description
of the equivariant structure of the cohomology of a curve $X$ with a group action over a field of characteristic~$0$. Their formula depends on the so-called \emph{fundamental characters} of points $x \in X$ that are ramified in the cover $X \to X/G$. ????
It is hard to expect such a formula over fields of characteristic~$p$.
Indeed, if $G$ is a finite group with a non-cyclic $p$-Sylow subgroup, the set of indecomposable $k[G]$-modules is infinite. If, moreover, $p > 2$ then the indecomposable $k[G]$-modules are considered impossible to classify (cf. \cite{Prest}). There are many results concerning equivariant structure of cohomologies for particular groups
(see e.g.~\cite{Valentini_Madan_Automorphisms} for the case of cyclic groups, \cite{WardMarques_HoloDiffs} for abelian groups, \cite{Bleher_Chinburg_Kontogeorgis_Galois_structure} for groups with a cyclic Sylow subgroup, or \cite{Bleher_Camacho_Holomorphic_differentials} for the Klein group) or curves (cf. \cite{Lusztig_Coxeter_orbits}, \cite{Dummigan_99}, \cite{Gross_Rigid_local_systems_Gm}, \cite{laurent_kock_drinfeld}). Also, one may expect that that (at least in the case of $p$-groups) determining cohomologies comes down to Harbater--Katz--Gabber covers (cf. \cite{Garnek_p_gp_covers}, \cite{Garnek_p_gp_covers_ii}). However, there is no hope of obtaining a result similar to the one of Chevalley and Weil.\\
This brings attention to groups with cyclic $p$-Sylow subgroup. For those, the set of
{\color{red} equivalence classes of }
indecomposable modules is finite (cf. \cite{Higman}, \cite{Borevic_Faddeev}, \cite{Heller_Reiner_Reps_in_integers_I}). While their representation theory still
seems a bit too complicated to derive a general formula for the cohomologies,
the article~\cite{Bleher_Chinburg_Kontogeorgis_Galois_structure} proved that
the $k[G]$-module structure of $H^0(X, \Omega_X)$ is determined by the higher ramification data (i.e. higher ramification groups and the fundamental characters of the ramification locus). The main result of this article is a similar statement for the de Rham cohomology.
%
\begin{mainthm}
Suppose that $G$ is a group with a $p$-cyclic Sylow subgroup.
Let $X$ be a curve with an action of~$G$ over a field $k$ of characteristic $p$.
The $k[G]$-module structure of $H^1_{dR}(X)$ is uniquely determined by the {\color{red} higher ramification groups} of the cover $X \to X/G$ and the genus of $X$.
\end{mainthm}
%
Note that if $p > 2$ and the $p$-Sylow subgroup of $G$ is not cyclic, the structure
of $H^1_{dR}(X)$ isn't determined uniquely by the higher ramification data. Indeed, see \cite{garnek_indecomposables} for a construction of $G$-covers with the same higher ramification data, but varying $k[G]$-module structure of $H^0(X, \Omega_X)$ and~$H^1_{dR}(X)$.\\
We elaborate now on the proof of Main Theorem. The first step is to prove Main Theorem for $G = \ZZ/p^n$. In this case we give an explicit formula for the structure of $H^1_{dR}(X)$, depending only on the ramification indices, ramification jumps and genus of the quotient
curve (see Theorem~\ref{thm:cyclic_de_rham}). This formula is proven inductively, by applying induction twice: once for the curve $X$ with an action of $\ZZ/p^{n-1}$ and once for the curve $X'' := X/(\ZZ/p)$.
In the second step, we use similar methods to show the result for a group of the form
$\ZZ/p^n \rtimes_{\chi} \ZZ/c$. Finally, we use Conlon induction theorem to deduce Main Theorem
for an arbitrary group with a cyclic $p$-Sylow subgroup.
%
\section{Notation and preliminaries}
%
Assume that $\pi : X \to Y$ is a $G$-cover of smooth projective curves over an field $k$
of characteristic $p$.
Throughout the paper we will use the following notation for any $P \in X(\ol k)$:
\begin{itemize}
\item $e_{X/Y, P}$ is the ramification index at $P$,
\item $m_{X/Y, P} := \ord_p(e_{X/Y, P})$ is the maximal power of~$p$
dividing the ramification index,
\item $m_{X/Y} := \max \{ m_{X/Y, P} : P \in X(k) \}$,
\item $u_{X/Y, P}^{(t)}$ (resp. $l_{X/Y, P}^{(t)}$) is the $t$th upper (resp. lower) ramification jump
at $P$ for $t \ge 1$,
\item $u^{(0)}_{X/Y, P} := 1$ for any ramified point $P \in X(\ol k)$
(note that this is not a standard convention),
\item $u_{X/Y, P} := u_{X/Y, P}^{(m_{X/Y, P})}$ is the last ramification jump.
\end{itemize}
%
By Hasse--Arf theorem (cf.
{\color{red}
\cite[p. 76]{Serre1979}),
}
if the $p$-Sylow subgroup of $G$ is abelian, the numbers $u_{X/Y, P}^{(t)}$ are integers.
For any $Q \in Y(\ol k)$ we denote also by abuse of notation $e_{X/Y, Q} := e_{X/Y, P}$,
$u_{X/Y, Q}^{(t)} := u_{X/Y, P}^{(t)}$, $G_Q := G_P$, etc. for arbitrary $P \in \pi^{-1}(Q)$.
Note that $G_Q$ is well-defined only up to conjugacy.
Let
%
\[
B_{X/Y} := \{ Q \in Y(\ol k) : e_{X/Y, Q} > 1 \}
\]
%
be the branch locus of $\pi$. In the article we often use the Iverson bracket notation:
%
\[
\llbracket P \rrbracket =
\begin{cases}
1, & \textrm{ if $P$ is true,}\\
0, & \textrm{ if $P$ is false.}
\end{cases}
\]
%
We review now some facts from representation theory of finite groups.
Recall that $\ZZ/p^n$ has $p^n$ indecomposable representations over a field of characteristic~$p$.
We denote them by $J_1, \ldots, J_{p^n}$. Observe that $J_i$ is given by the Jordan block of size $i$ and eigenvalue $1$. Assume now that $G$ is a finite group with a normal cyclic $p$-Sylow subgroup $H = \langle \sigma \rangle \cong \ZZ/p^n$. Let $C := G/H$.
Recall that if $U$ is an indecomposable $k[G]$-module
then $U^{\sigma} := \ker(\sigma - 1)$ (the socle of $U$) is an indecomposable
$k[C]$-module. It turns out that the map
%
\begin{align*}
\Indec(k[G]) &\to \Indec(k[C]) \times \{ 1, \ldots, p^n \}\\
U &\mapsto \left(U^{\sigma}, \frac{\dim_k U}{\dim_k U^{\sigma}} \right)
\end{align*}
%
is a bijection (cf. \cite[p. 35--37, 42 -- 43]{Alperin_local_rep}). We write
$\mc V(M, i)$ for the $k[G]$-module corresponding to a pair $(M, i) \in \Indec(k[C]) \times \{ 1, \ldots, p^n \}$.
Finally, we recall the classical Chevalley-Weil formula. For any $e \in \NN$, denote by $\chi_e$ the primitive character of a cyclic group of order $e$. Let also $\theta_{X/Y, P} : G_P \to \Aut_k(\mf m_P/\mf m_P^2) \cong k^{\times}$ be the fundamental character of~$P$. Again, for $Q \in Y(k)$ we write $\theta_{X/Y, Q} := \theta_{X/Y, P}$ for any $P \in \pi^{-1}(Q)$.
%
{\color{red}
\begin{Proposition} \label{prop:chevalley_weil}
Keep the above notation and assume that $p \nmid \# G$. Then:
%
\begin{equation} \label{eqn:cw}
H^0(X, \Omega_X) \cong \bigoplus_{W \in \Indec(k[G])} W^{\oplus a(W)},
\end{equation}
%
where:
%
\begin{align*}
a(W) := (g_Y - 1) \cdot \dim_k W + \sum_{Q \in Y(k)} \sum_{i = 1}^{e_{X/Y, Q} - 1} \frac{e_{X/Y, Q} - i}{e_{X/Y, Q}} \cdot N_{Q, i}(W) + \llbracket W \cong k \rrbracket,
\end{align*}
%
and $N_{Q, i}(W)$ is the multiplicity of the character $\chi_{e_Q}^i$ in the $k[G_Q]$-module $W \otimes_{k[G_Q]} \theta_{X/Y, Q}$.
\end{Proposition}
%
\begin{Corollary}[Chevalley--Weil formula for the de Rham cohomology]
Keep the notation of Proposition~\ref{prop:chevalley_weil}. Then:
\begin{equation} \label{eqn:cw_dR}
H^1_{dR}(X) \cong \bigoplus_{W \in \Indec(k[G])} W^{\oplus a^{dR}(W)}.
\end{equation}
%
where:
%
\begin{align*}
a^{dR}(W) := 2 (g_Y - 1) \cdot \dim_k W + \sum_{Q \in Y(k)} \dim_k W/W^{G_Q} + 2 \cdot \llbracket W \cong k \rrbracket.
\end{align*}
%
\end{Corollary}
%
\begin{Remark}
??? Note that if $H$ and $H'$ are conjugated subgroups of $G$ then $\dim_k W^H = \dim_k W^{H'}$. Thus the sum
in Corollary ??? is well-defined.
\end{Remark}
%
\begin{proof}
Note that the category of $k[C]$-modules is semisimple. Hence, by the Hodge--de Rham exact sequence (??recall it earlier??) and Serre's duality (cf. ????):
%
\begin{align*}
H^1_{dR}(X) &\cong H^0(X, \Omega_X) \oplus H^1(X, \mc O_X)\\
&\cong H^0(X, \Omega_X) \oplus H^0(X, \Omega_X)^{\vee}\\
&\cong \bigoplus_{W \in \Indec(k[G])} W^{\oplus (a(W) + a(W^{\vee}))}.
\end{align*}
%
Note moreover that $N_{Q, i}(W^{\vee}) = N_{Q, e_Q - i}(W)$
(since $\chi_{e_Q}^{e_Q - i}$ is the dual representation to $\chi_{e_Q}^i$), $N_{Q, 0}(W) = \dim_k W^{G_Q}$ and:
%
\[
\sum_{i = 0}^{e_Q - 1} N_{Q, i}(W) = \dim_k W.
\]
%
Therefore $a(W) + a(W^{\vee})$ equals:
%
\begin{align*}
2 (g_Y - 1) \cdot \dim_k W
&+ \sum_{Q \in Y(k)} \sum_{i = 1}^{e_{X/Y, Q} - 1}
\frac{e_{X/Y, Q} - i}{e_{X/Y, Q}}
\cdot \big(N_{Q, i}(W) + N_{Q, i}(W^{\vee})\big) \\
&\quad + 2 \llbracket W \cong k \rrbracket \\
&= 2 (g_Y - 1) \cdot \dim_k W
+ \sum_{Q \in Y(k)} \sum_{i = 1}^{e_{X/Y, Q} - 1}
\left(\frac{e_{X/Y, Q} - i}{e_{X/Y, Q}}
+ \frac{i}{e_{X/Y, Q}}\right) \cdot N_{Q, i}(W) \\
&\quad + 2 \llbracket W \cong k \rrbracket \\
&= 2 (g_Y - 1) \cdot \dim_k W
+ \sum_{Q \in Y(k)} \big(\dim_k W - \dim_k W^{G_Q}\big) \\
&\quad + 2 \llbracket W \cong k \rrbracket.
\end{align*}
%
This ends the proof.
%
\end{proof}
%
When considering an action of a group~$G$ on a curve $X$ we will write $a_{X, G}^{dR}(W)$ instead of $a^{dR}(W)$ for clarity.
}
\section{Cyclic covers}
%
\begin{Theorem} \label{thm:cyclic_de_rham}
Let $k$ be an algebraically closed field of characteristic~$p$.
Suppose that $\pi : X \to Y$ is a $\ZZ/p^n$-cover. Pick arbitrary $Q_0 \in Y(k)$
with $m_{X/Y, Q_0} = m_{X/Y}$. Then, as a $k[\ZZ/p^n]$-module
$H^1_{dR}(X)$ is isomorphic to:
%
\begin{equation} \label{eqn:HdR_formula}
J_{p^n}^{2 (g_Y - 1)} \oplus J_{p^n - p^{n-m} + 1}^2 \oplus \bigoplus_{\substack{Q \in B\\ Q \neq Q_0}} J_{p^n - p^n/e_{Q}}^2
\oplus \bigoplus_{Q \in B} \bigoplus_{t = 0}^{m_{Q}} J_{p^n - p^{n+t}/e_Q}^{u_Q^{(t+1)} - u_Q^{(t)}},
\end{equation}
%
where $B := B_{X/Y}$, $e_Q := e_{X/Y, Q}$ and $u_Q^{(t)} := u_{X/Y, Q}^{(t)}$, $m := m_{X/Y, Q}$, $m_Q := m_{X/Y, Q}$.
\end{Theorem}
%
\begin{Remark}
Note that this formula is well-defined for $g_Y = 0$, even though the first exponent is negative. Indeed, since $m_{X/Y} = n$ (as $\PP^1$ doesn't have any \'{e}tale covers), the first two summands in~\eqref{eqn:HdR_formula} cancel out.
\end{Remark}
%
Write $H := \langle \sigma \rangle \cong \ZZ/p^n$.
For any $k[H]$-module $M$ denote:
%
\begin{align*}
M^{(i)} &:= \ker ((\sigma - 1)^i : M \to M),\\
T^i M &= T^i_H M := M^{(i)}/M^{(i-1)} \quad \textrm{ for } i = 1, \ldots, p^n.
\end{align*}
%
Recall that $\dim_k T^i M$ for $i=1, \ldots, p^n$
determines the structure of $M$ completely (see \cite[p. 108]{Valentini_Madan_Automorphisms} -- they give the argument for $M := H^0(X, \Omega_X)$,
but it works for an arbitrary module).
Moreover, for $i > 0$:
%
\begin{equation} \label{eqn:dim_of_Ti_Jl}
\dim_k T^i J_l = \llbracket i \le l \rrbracket.
\end{equation}
%
In the inductive step we use also the group $H' := \ZZ/p^{n-1}$. In this case
we denote the indecomposable $k[H']$-modules by $\mc J_1, \ldots, \mc J_{p^{n-1}}$
and $\mc T^i M := T^i_{H'} M$ for any $k[H']$-module $M$.
%
\begin{Lemma} \label{lem:G_invariants_\'{e}tale}
If the $G$-cover $X \to Y$ is \'{e}tale, then
%
\[
\dim_k H^1_{dR}(X)^G = 2g_Y - \dim_k H^1(G, k) + \dim_k H^2(G, k).
\]
%
In particular, if $G \cong \ZZ/p^n$ then $\dim_k H^1_{dR}(X)^G = 2g_Y$.
\end{Lemma}
\begin{proof}
Let $\HH^i(Y, \mc F^{\bullet})$ be the $i$th hypercohomology of a complex $\mc F^{\bullet}$.
Write also $\mc H^i(G, -)$ for the $i$th derived functor of the functor
%
\[
\mc F \mapsto \mc F^G.
\]
%
Since $X \to Y$ is \'{e}tale, $\mc H^i(G, \pi_* \mc F) = 0$ for any $i > 0$ and any coherent sheaf $\mc F$ on $X$ by \cite[Proposition~2.1]{Garnek_equivariant}.
Therefore the spectral sequence~\cite[(3.4)]{Garnek_equivariant} applied for the complex $\mc F^{\bullet} := \pi_* \Omega_{X/k}^{\bullet}$ yields $\RR^i \Gamma^G(\pi_* \Omega_{X/k}^{\bullet}) = \HH^1(Y, \pi_*^G \Omega_{X/k}^{\bullet}) = H^1_{dR}(Y)$, since $\pi_*^G \Omega_X^{\bullet} \cong \Omega_Y$ (cf. ???).
On the other hand, the seven-term exact sequence applied for the spectral sequence~\cite[(3.5)]{Garnek_equivariant} yields:
%
\begin{align*}
0 \to H^1(G, H^0_{dR}(X)^G) \to H^1_{dR}(Y) \to H^1_{dR}(X)^G \to H^2(G, H^0_{dR}(X)^G) \to K,
\end{align*}
%
where:
%
\[
K := \ker(H^2_{dR}(Y) \to H^2_{dR}(X)^G) = \ker(k \stackrel{\id}{\rightarrow} k) = 0.
\]
%
Therefore, since $H^0_{dR}(X)^G \cong k$:
%
\begin{align*}
\dim_k H^1_{dR}(X)^G = \dim_k H^1_{dR}(Y) - \dim_k H^1(G, k) + \dim_k H^2(G, k)\\
= 2g_Y - \dim_k H^1(G, k) + \dim_k H^2(G, k).
\end{align*}
%
Finally, note that if $G$ is cyclic then $\dim_k H^1(G, k) = \dim_k H^2(G, k)$ by \cite[th. 6.2.2]{Weibel}.
\end{proof}
%
\begin{Remark}
The equality $\dim_k H^1(G, k) = \dim_k H^2(G, k)$ does not hold for non-cyclic groups. For example it is known \cite[cor. II.4.3,th. II.4.4]{MR2035696} that the cohomological ring for the elementary abelian group $\mathbb{F}_p^s$ is given by
\[
H^* (G, \mathbb{F}_p)=
\begin{cases}
\mathbb{F}_2[x_1, \ldots,x_s] & \text{ if } p=2 \\
\wedge(x_{1}, \ldots, x_s) \otimes \mathbb{F}_p[x_1, \ldots,x_s] & \text{ if } p>2
\end{cases}
\]
Therefore, for $s>1$ the degree one and two parts of the cohomological ring, which correspond to the first and second cohomology groups, have different dimensions.
\end{Remark}
%
\begin{Lemma} \label{lem:trace_surjective}
Suppose that $G$ is a $p$-group.
If the $G$-cover $X \to Y$ is totally ramified, then the map
%
\[
\tr_{X/Y} : H^1_{dR}(X) \to H^1_{dR}(Y)
\]
%
is an epimorphism.
\end{Lemma}
\begin{proof}
%
By induction, it suffices to prove this in the case when $G = \ZZ/p$.
Consider the following commutative diagram:
%
\begin{center}
% https://tikzcd.yichuanshen.de/#N4Igdg9gJgpgziAXAbVABwnAlgFyxMJZABgBpiBdUkANwEMAbAVxiRGJAF9T1Nd9CKMgEYqtRizYduvbHgJFh5MfWatEIABIA9YgAoAGqQAEAHVMB5ALYwA5nQD6BgJRceIDHIGLSo6qskNHX0ATRNzaztHENcZDz55QWQAJmV-CXUtbWEHYCgAJU5DWPdPfgUUVL9xNTYdHLzCvRi3WXKkgGY0msCs4UNw0ysAY2MLJxK2xKIu6oDM+ubBkbGHFriy6ZQAFm75qVb4rwrkXbmMg84xGChbeCJQADMAJwgrJDIQHAgkZLiXt6-ajfJDbf6vd6IXZfH6IABs4MB8OBsIAHIjIQB2FFIACcGKQAFYcYhMQTEF0YUTyUoqRTyak6ZT9hpzDhnrkDAB6EKcQ4AyHQkGIYk9TJsjnAbm8-kQpBwknYsVsCWcnl8q6cIA
\begin{tikzcd}
0 \arrow[r] & {H^0(X, \Omega_X)} \arrow[r] \arrow[d, "\tr_{X/Y}"] & H^1_{dR}(X) \arrow[r] \arrow[d, "\tr_{X/Y}"] & {H^1(X, \mc O_X)} \arrow[r] \arrow[d, "\tr_{X/Y}"] & 0 \\
0 \arrow[r] & {H^0(Y, \Omega_Y)} \arrow[r] & H^1_{dR}(Y) \arrow[r] & {H^1(Y, \mc O_Y)} \arrow[r] & 0
\end{tikzcd}
\end{center}
%
where the rows are Hodge--de Rham exact sequences. Recall that by~\cite[Theorem~1]{Valentini_Madan_Automorphisms}, in this case $H^0(X, \Omega_X)$ contains
a copy of $k[G]^{\oplus g_Y}$ as a direct summand. Thus, since trace is injective on $k[G]^{\oplus g_Y}$, the dimension
of the image of
%
\begin{equation} \label{eqn:trace_H0_Omega}
\tr_{X/Y} : H^0(X, \Omega_X) \to H^0(Y, \Omega_Y)
\end{equation}
%
is $g_Y$. Therefore the map~\eqref{eqn:trace_H0_Omega} is surjective.
Similarly, by Serre's duality, also $H^1(X, \mc O_X)$ contains $k[G]^{\oplus g_Y}$ as a direct summand
and one shows similarly that the trace map
%
\begin{equation*} %\label{eqn:trace_H0_Omega}
\tr_{X/Y} : H^1(X, \mc O_X) \to H^1(Y, \mc O_Y)
\end{equation*}
%
is surjective. Therefore, since the outer vertical maps in the diagram are surjective,
the trace map on the de Rham cohomology must be surjective as well.
%
\end{proof}
%
\begin{Lemma} \label{lem:TiM_isomorphism}
For any $i \le p^n - 1$ we have the following $k$-linear monomorphism:
%
\[
m_{\sigma - 1} : T^{i+1} M \hookrightarrow T^i M.
\]
\end{Lemma}
\begin{proof}
%
We define $m_{\sigma - 1}$ as follows:
%
\[
m_{\sigma - 1}(\ol x) := (\sigma - 1) \cdot x,
\]
%
where for $\ol x \in T^{i+1} M$ we picked any representative $x \in M^{(i+1)}$.
Indeed, if $x \in M^{(i+1)}$ then clearly $(\sigma - 1) \cdot x \in M^{(i)}$.
Moreover $(\sigma - 1) \cdot x \in M^{(i-1)}$ holds if and only if $x \in M^{(i)}$. This
shows that $m_{\sigma - 1}$ is well-defined and injective.
\end{proof}
%
\begin{Lemma} \label{lem:lemma_mcT_and_T}
Let $M$ be a $k[H]$-module. Let $T^i M$ and $\mc T^i M$ be as above.
If $\dim_k \mc T^i M = \dim_k \mc T^{i+1} M$ for some $i$ then:
%
\[
\dim_k T^{pi + p} M = \dim_k T^{pi + p - 1} M = \cdots = \dim_k T^{pi - p + 1} M.
\]
\end{Lemma}
\begin{proof}
Note that $\mc T^i M = M^{(pi)}/M^{(pi - p)}$. This easily implies that:
%
\begin{align*}
\dim_k \mc T^i M &= \dim_k T^{pi} M + \cdots + \dim_k T^{pi - p + 1} M\\
&\ge \dim_k T^{pi+p} M + \cdots + \dim_k T^{pi+1} M
= \dim_k \mc T^{i+1} M.
\end{align*}
%
Since the left-hand side and right hand side are equal, we conclude by Lemma~\ref{lem:TiM_isomorphism}
\end{proof}
%
\begin{Lemma} \label{lem:u_equals_ul}
Assume that $\phi: Y' \to Y$ is a $\ZZ/p$-subcover of $X \to Y$.
Then:
%
\[
p \cdot \sum_{Q \in B_{X/Y}} (u_{X/Y, Q} - 1) = \sum_{Q' \in B_{X/Y'}} (u_{X/Y', Q'} - 1)
+ (p-1) \cdot \sum_{Q \in B_{Y'/Y}} (l^{(1)}_{Y'/Y, Q} + 1).
\]
%
\end{Lemma}
\begin{proof}
%
Pick a point $Q \in B_{X/Y}$. If $Q \not \in B_{Y'/Y}$ then
$u_{X/Y, Q} = u_{X/Y', Q'}$ for all $p$ points $Q' \in Y'(k)$ in the preimage of $Q$ and:
%
\begin{equation} \label{eqn:Q_not_in_B'}
p \cdot (u_{X/Y, Q} - 1) = \sum_{Q' \in {\color{red} \phi^{-1}(Q)}} (u_{X/Y', Q'} - 1).
\end{equation}
%
Assume now that $Q \in B_{Y'/Y}$. Then there exists a unique point $Q' \in Y'(k)$
in the preimage of $Q$ through $\phi: Y' \to Y$. Moreover, $m_{X/Y, Q} = n$, $m_{X/Y', Q'} = n-1$.
Recall also that by \cite[Example p.76]{Serre1979}
there exist integers $i_{X/Y, P}^{(0)}, i_{X/Y, P}^{(1)}, \ldots$ such that for every $t \ge 0$:
%
\begin{align*}
u_{X/Y, P}^{(t)} &= i_{X/Y, P}^{(0)} + i_{X/Y, P}^{(1)} + \cdots + i_{X/Y, P}^{(t-1)}\\
l_{X/Y, P}^{(t)} &= i_{X/Y, P}^{(0)} + i_{X/Y, P}^{(1)} \cdot p + \cdots + i_{X/Y, P}^{(t-1)} \cdot p^{t-1}.
\end{align*}
%
Observe that:
%
\begin{align*}
i_{X/X', P}^{(0)} &= i_{X/Y, P}^{(0)} + i_{X/Y, P}^{(1)} \cdot p,\\
i_{X/X', P}^{(t)} &= p \cdot (i_{X/Y, P}^{(t + 1)} + \cdots + i_{X/Y, P}^{(n-1)}) \quad \textrm{ for } t > 0.
\end{align*}
%
This implies that
%
\begin{equation} \label{eqn:Q_in_B'}
p \cdot (u_{X/Y, Q} - 1) = (u_{X/Y', Q'} - 1) + (p-1) \cdot (l^{(1)}_{X/Y, Q} + 1).
\end{equation}
%
Indeed, using the above formulas:
%
\begin{align*}
p \cdot (u_{X/Y, Q} - 1) &=
p \cdot (i^{(0)}_{X/Y, Q} + \cdots + i^{(m_Q - 1)}_{X/Y, Q} - 1)\\
&= (p-1) \cdot (i^{(0)}_{X/Y, Q} + 1) + (i^{(0)}_{X/Y, Q} + p \cdot i^{(1)}) \\
&+ p \cdot (i^{(2)}_{X/Y, Q} + i^{(3)}_{X/Y, Q} + \cdots) - 1 \\
&= (p-1) \cdot (l^{(1)}_{X/Y, Q} + 1) + (i^{(0)}_{X/Y', Q'} + i^{(1)}_{X/Y', Q'} + \cdots - 1)\\
&= (p-1) \cdot (l^{(1)}_{X/Y, Q} + 1) + (u_{X/Y', Q'} - 1).
\end{align*}
%
The proof follows by summing~\eqref{eqn:Q_not_in_B'} and~\eqref{eqn:Q_in_B'} over all $Q \in B_{X/Y}$.
\end{proof}
\begin{proof}[Proof of Theorem~\ref{thm:cyclic_de_rham}]
We use the following notation: $H' := \langle \sigma^p \rangle \cong \ZZ/p^{n-1}$,
$H'' := H/\langle \sigma^{p^{n-1}} \rangle \cong \ZZ/p^{n-1}$, $Y' := X/H'$ and $X'' := X/\langle \sigma^{p^{n-1}} \rangle$ {\color{red}, see the diagram below.}
\[
\xymatrix{
& X \ar[rd]^{\langle \sigma^{p^{n-1}} \rangle} \ar[ld]_{\langle \sigma^p \rangle =H'} \ar[dd]^{\pi}& \\
Y' \ar[rd]^{\phi} & & X'' \ar[ld]\\
& Y &
}
\]
{\color{red} Note that $H''$ naturally acts on $X''$ and $X''/H'' \cong Y$.}
Let also $\mc M := H^1_{dR}(X)$ and write $\mc M_0$ for the module~\eqref{eqn:HdR_formula}.
We consider now two cases. If the cover $X \to Y$ is \'{e}tale, then by induction assumption, since $2(g_{Y'} - 1) = p \cdot 2 \cdot (g_Y - 1)$:
%
\[
\mc M \cong \mc J_{p^{n-1}}^{2 p \cdot (g_Y - 1)} \oplus k^{\oplus 2}.
\]
%
Therefore $\dim_k \mc T^2 \mc M = \cdots = \dim_k \mc T^{p^{n-1}} \mc M = 2 p (g_Y - 1)$,
which by Lemma~\ref{lem:lemma_mcT_and_T} implies that
%
\[
\dim_k T^p \mc M = \cdots = \dim_k T^{p^n} \mc M = 2(g_Y - 1) = \dim_k T^p \mc M_0.
\]
%
Thus, for $i = 2, \ldots, p$:
%
\[
\dim_k T^i \mc M \ge 2(g_Y - 1) = \dim_k T^{p+1} \mc M.
\]
%
On the other hand, by Lemma~\ref{lem:G_invariants_\'{e}tale} we have
%
$
\dim_k T^1 \mc M = 2 g_Y = \dim_k T^1 \mc M_0
$. Thus:
%
\begin{align*}
\sum_{i = 2}^p \dim_k T^i \mc M = 2g_X - \dim_k T^1 \mc M - \sum_{i = p+1}^{p^n} \dim_k T^i \mc M = (p-1) \cdot 2(g_Y - 1).
\end{align*}
%
Thus $\dim_k T^i \mc M = 2(g_Y - 1) = \dim_k T^i \mc M_0$ for every $i \ge 2$, which ends the proof in this case.
Assume now that $X \to Y$ is not \'{e}tale. Therefore $X \to X''$ is also not \'{e}tale.
By induction hypothesis for $H'$ acting on $X$, we have the following isomorphism of $k[H']$-modules:
%
\[
\mc M \cong \mc J_{p^{n-1}}^{2 (g_{Y'} - 1)} \oplus \mc J_{p^{n-1} - p^{n - m} + 1}^2 \oplus \bigoplus_{\substack{Q \in Y'(k)\\Q \neq Q_1}} \mc J_{p^{n-1} - p^{n-1}/e'_Q}^2
\oplus \bigoplus_{Q \in Y'(k)} \bigoplus_{t = 0}^{n-2} \mc J_{p^n - p^t}^{u_{X/Y', Q}^{(t+1)} - u_{X/Y', Q}^{(t)}}
\]
%
where $e'_Q := e_{X/Y', Q}$ and $Q_1 \in \pi^{-1}(Q_0)$. Therefore, for $i \le p^{n-1} - p^{n-2}$, using the Riemann--Hurwitz formula (cf. \cite[Corollary~IV.2.4]{Hartshorne1977}) and Lemma~\ref{lem:u_equals_ul}:
%
\begin{align*}
\dim_k \mc T^i \mc M &=
2(g_{Y'} - 1) + 2 + 2(\# B - 1) + \sum_{Q' \in Y'(k)} (u_{X/Y', Q'} - 1)\\
&= 2 p (g_Y - 1) + \sum_{Q' \in Y'(k)} (p-1) \cdot (l_{Y'/Y, Q'}^{(1)} + 1)\\
&+ 2 + 2(\# B - 1) + \sum_{Q' \in Y'(k)} (u_{X/Y', Q'} - 1)\\
&= p \cdot \left( 2(g_Y - 1) + 2 + 2(\# B - 1) + \sum_{Q' \in Y(k)} (u_{X/Y, Q'} - 1) \right).
\end{align*}
%
In particular, $\dim_k \mc T^1 \mc M = \cdots = \dim_k \mc T^{p^{n-1} - p^{n-2}} \mc M$.
Thus by Lemma~\ref{lem:lemma_mcT_and_T} for any $1 \le i \le p^n - p^{n-1}$:
%
\begin{align*}
\dim_k T^i \mc M &= \frac{1}{p} \dim_k \mc T^1 \mc M\\
&= 2(g_Y - 1) + 2 + 2(\# B - 1) + \sum_{Q \in Y(k)} (u_{X/Y, P} - 1)\\
&= \dim_k T^i \mc M_0.
\end{align*}
%
By Lemma~\ref{lem:trace_surjective} since $X \to X''$ is not \'{e}tale, the map $\tr_{X/X''} : H^1_{dR}(X) \to H^1_{dR}(X'')$ is surjective. Recall that
in $\FF_p[x]$ we have the identity:
%
\[
1 + x + \cdots + x^{p-1} = (x - 1)^{p-1}.
\]
%
Therefore in the group ring $k[H]$ we have:
%
\[
\tr_{X/X''} = \sum_{j = 0}^{p-1} (\sigma^{p^{n-1}})^j = (\sigma^{p^{n-1}} - 1)^{p-1} =
(\sigma - 1)^{p^n - p^{n-1}}.
\]
%
This implies that:
%
\[
\ker(\tr_{X/X''} : \mc M \to \mc M'') = \mc M^{(p^n - p^{n-1})}
\]
%
and that $\tr_{X/X''}$ induces a $k$-linear isomorphism $T^{j + p^n - p^{n-1}} \mc M \to \mc T^j \mc M''$ for any $j \ge 1$. ?? Therefore, if $i \in (p^n - p^{N+1}, p^n - p^N]$:
%
\begin{align*}
\dim_k T^i \mc M_0 &= 2 \cdot (g_Y - 1) + 2 \cdot \llbracket N < n - m \rrbracket\\
&+ 2 \cdot \# \{ Q \in Y(k) \setminus \{Q_0\} : N \le n - m_Q \}\\
&+ \sum_{Q \in Y(k)} \sum_{t = 0}^{m_Q - 1} \llbracket t \ge m_Q + N - n \rrbracket \cdot (u_{Q}^{(t+1)} - u_{Q}^{(t)}).
\end{align*}
%
Suppose now that
$i = p^n - p^{n-1} + j$, where $j \in (p^{n-1} - p^{N+1}, p^{n-1} - p^N]$. Then, by induction assumption:
%
\begin{align*}
\dim_k T^i \mc M &= \dim_k \mc T^j \mc M'' = 2 \cdot (g_Y - 1) + 2 \cdot \llbracket N < (n - 1) - (m - 1) \rrbracket\\
&+ 2 \cdot \# \{ Q \in Y(k) \setminus \{Q_0\} : N \le (n-1) - (m_{X''/Y, Q}) \}\\
&+ \sum_{Q \in Y(k)} \sum_{t = 0}^{m_{X''/Y, Q}} \llbracket t \ge m_{X''/Y, Q} + N - (n - 1) \rrbracket \cdot (u_{X''/Y, Q}^{(t+1)} - u_{X''/Y, Q}^{(t)})\\
&= 2 \cdot (g_Y - 1) + 2 \cdot \llbracket N < n - m \rrbracket\\
&+ 2 \cdot \# \{ Q \in Y(k) \setminus \{Q_0\} : N \le n - m_Q \}\\
&+ \sum_{Q \in Y(k)} \sum_{t = 0}^{m_Q - 1} \llbracket t \ge m_Q + N - n \rrbracket \cdot (u_{Q}^{(t+1)} - u_{Q}^{(t)})\\
&= \dim_k T^i \mc M_0.
\end{align*}
%
This ends the proof.
\end{proof}
\section{Proof of Main Theorem}
%
\begin{Lemma} \label{lem:reductions}
Suppose $M$ is a finitely generated $k[G]$-module.
\begin{enumerate}[leftmargin=*]
\item The $k[G]$-module structure of $M$
is uniquely determined by the restrictions $M|_H$ as $H$ ranges over all $p$-hypo-elementary subgroups of $G$.
\item The $k[G]$-module structure of $M$ is uniquely determined by the $\ol k[G]$-module structure of $M \otimes_k \ol k$.
\end{enumerate}
\end{Lemma}
\begin{proof}
\begin{enumerate}[leftmargin=*]
\item This follows easily from Conlon induction theorem (cf. \cite[Theorem~(80.51)]{Curtis_Reiner_Methods_II}), see e.g. \cite[Lemma~3.2]{Bleher_Chinburg_Kontogeorgis_Galois_structure}.
\item This is \cite[Proposition~3.5. (iii)]{Bleher_Chinburg_Kontogeorgis_Galois_structure}
\end{enumerate}
\end{proof}
%
By Lemma~\ref{lem:reductions} we may assume that $G = H \rtimes_{\chi} C = \langle \sigma \rangle \rtimes_{\chi} \langle \rho \rangle \cong \ZZ/p^n \rtimes_{\chi} \ZZ/c$ and that $k$ is algebraically closed.
Let $X$ be a curve with an action of $G$ and write $Y := X/H$. For any $k[C]$-module $M$ and any character $\psi$ of $H$ we write $M^{\psi} := M \otimes_{k[C]} \psi$.
%
\begin{Lemma}
Let $k$ and $G$ be as above. Assume that $M$ is a $k[G]$-module of finite dimension. The $k[G]$-structure of $M$
is uniquely determined by the $k[C]$-structure of $T^1 M, \ldots, T^{p^n} M$.
\end{Lemma}
\begin{proof}
This is basically \cite[proof of Theorem~1.1]{Bleher_Chinburg_Kontogeorgis_Galois_structure}. We sketch the proof for reader's convenience. Let $\psi : C \to k^{\times}$ be a primitive character. Write
%
\[
M \cong \bigoplus_{i = 1}^{p^n} \bigoplus_{W \in \Indec(C)} \mc V(W, i)^{\oplus n(W, i)}.
\]
%
Note that as $k[C]$-modules:
%
\[
T^j \mc V(W, i) \cong
\begin{cases}
W^{\chi^{-j + 1}}, & \textrm{ if } j \le i,\\
0, & \textrm{ if } j > i.
\end{cases}
\]
%
Hence:
%
\[
T^j M \cong \bigoplus_{i = j}^{p^n} \bigoplus_{W \in \Indec(C)} (W^{\chi^{-j + 1}})^{\oplus n(W, i)}
\]
%
and the $k[C]$-module structure of $T^j M$ determines uniquely
the numbers:
%
\[
\sum_{i = j}^{p^n} n(W, i)
\]
%
for every $W \in \Indec(k[C])$. This easily implies that the numbers $n(W, 1)$, $\ldots$, $n(W, p^n)$ are uniquely determined by the $k[C]$-structure of $T^1 M$, $\ldots$, $T^{p^n} M$. The proof follows.
\end{proof}
%
\begin{Lemma} \label{lem:N+Nchi+...}
Keep the above notation. Let $M$, $N$ be $k[C]$-modules.
If
%
\[
N \cong M \oplus M^{\chi} \oplus \ldots \oplus M^{\chi^{p-1}},
\]
then $N$ is uniquely determined by $M$.
\end{Lemma}
\begin{proof}
Note that
%
\[
N \cong M^{\oplus 2} \oplus M^{\chi} \oplus M^{\chi^2} \oplus \cdots \oplus M^{\chi^{p-2}}.
\]
%
By tensoring this isomorphism by $\chi^i$ we obtain:
%
\begin{align*}
N^{\chi^i} \cong (M^{\chi^i})^{\oplus 2} \oplus M^{\chi^{i+1}} \oplus M^{\chi^{i+2}} \oplus \cdots \oplus M^{\chi^{i + p-2}}
\cong (M^{\chi^i})^{\oplus 2} \oplus \bigoplus_{\substack{j = 0\\j \neq i}}^{p-2} M^{\chi^j}
\end{align*}
%
for $i = 0, \ldots, p-2$. Therefore:
%
\begin{equation} \label{eqn:M+N=N}
M^{\oplus p} \oplus N^{\chi} \oplus N^{\chi^2} \oplus \cdots \oplus N^{\chi^{p-2}}
\cong N^{\oplus (p-1)}.
\end{equation}
%
Indeed, for the proof of~\eqref{eqn:M+N=N} note that
%
\begin{align*}
M^{\oplus p} &\oplus N^{\chi} \oplus N^{\chi^2} \oplus \cdots \oplus N^{\chi^{p-2}}
\cong M^{\oplus p} \oplus \bigoplus_{i = 1}^{p-2} \left((M^{\chi^i})^{\oplus 2}
\oplus \bigoplus_{\substack{j = 0\\j \neq i}}^{p-2} M^{\chi^j} \right)\\
&\cong \left( M^{\oplus 2} \oplus M^{\chi} \oplus M^{\chi^2} \oplus \cdots \oplus M^{\chi^{p-2}} \right)^{\oplus (p-1)}
\cong N^{\oplus (p-1)}.
\end{align*}
%
The isomorphism~\eqref{eqn:M+N=N} clearly proves the thesis.
\end{proof}
%
\begin{Lemma} \label{lem:TiM_isomorphism_hypoelementary}
For any $i \le p^n - 1$ the map~$m_{\sigma - 1}$ from Lemma~\ref{lem:TiM_isomorphism}
yields a $k[C]$-equivariant monomorphism:
%
\[
m_{\sigma - 1} : T^{i+1} M \hookrightarrow (T^i M)^{\chi^{-1}}.
\]
\end{Lemma}
\begin{proof}
By Lemma~\ref{lem:TiM_isomorphism} this map is injective. Thus it suffices to check that it is $k[C]$-equivariant.
Note that we have the following identity in the ring~$k[C]$:
%
\[
(\sigma - 1) \cdot \rho = \rho \cdot (\sigma^{\chi(\rho)^{-1}} - 1)
= \rho \cdot (\sigma - 1) \cdot (1 + \sigma + \sigma^2 + \cdots + \sigma^{\chi(\rho)^{-1} - 1})
\]
%
Note that $\sigma$ acts trivially on $T^i M$, so that for any $\ol x \in T^i M$:
%
\[
(1 + \sigma + \sigma^2 + \cdots + \sigma^{\chi(\rho)^{-1} - 1}) \cdot \ol x = \chi(\rho)^{-1} \cdot \ol x.
\]
%
This easily shows that
%
\[
m_{\sigma - 1}(\rho \cdot \ol x) = \chi(\rho)^{-1} \cdot \rho \cdot m_{\sigma - 1}(\ol x),
\]
%
which ends the proof.
%
\end{proof}
\begin{proof}[Proof of Main Theorem]
As explained at the beginning of this section, it suffices to show this in the case when $G = H \rtimes_{\chi} C = \langle \sigma \rangle \rtimes_{\chi} \langle \rho \rangle \cong \ZZ/p^n \rtimes_{\chi} \ZZ/c$ and $k = \ol k$ by Lemma~\ref{lem:reductions}. {\color{red} Let $Y := X/H$. Similarly as in the proof of Theorem~\ref{thm:cyclic_de_rham}, we write $H' := \langle \sigma^p \rangle \cong \ZZ/p^{n-1}$,
$H'' := H/\langle \sigma^{p^{n-1}} \rangle \cong \ZZ/p^{n-1}$, $Y' := X/H'$ and $X'' := X/\langle \sigma^{p^{n-1}} \rangle$. Observe that the ramification datum of the covers $X'' \to Y$ and $X \to Y'$ depends only on the ramification data of $X \to Y$.
We prove the result by induction on~$n$.} If $n = 0$, then it follows by Chevalley--Weil theorem.
Consider now two cases. Firstly, we assume that $X \to Y$ is \'{e}tale. Then by Lemma~\ref{lem:G_invariants_\'{e}tale} and \cite[Corollary~2.4]{Garnek_equivariant} we have $\dim_k H^1_{dR}(X)^H = 2g_Y = \dim_k H^0(X, \Omega_X)^H + \dim_k H^1(X, \mc O_X)^H$. Therefore the Hodge--de Rham exact sequence splits by \cite[Lemma~5.3]{Garnek_equivariant} and
%
\begin{align*}
H^1_{dR}(X) &\cong H^0(X, \Omega_X) \oplus H^1(X, \mc O_X)\\
&\cong H^0(X, \Omega_X) \oplus H^1(X, \mc O_X)^{\vee}
\end{align*}
%
(the last isomorphism follows from Serre's duality, cf. ???).
Now it suffices to note that by~\cite[Theorem~1.1]{Bleher_Chinburg_Kontogeorgis_Galois_structure}
the $k[G]$-module structure of $H^0(X, \Omega_X)$ is determined by the higher ramification data. This ends the proof in this case.\\
Assume now that $X \to Y$ is not \'{e}tale. Lemma~\ref{lem:TiM_isomorphism_hypoelementary} and proof of Theorem~\ref{thm:cyclic_de_rham}
yield an isomorphism of $k[C]$-modules:
%
\begin{equation} \label{eqn:TiM=T1M_chi}
T^{i+1} \mc M \cong (T^1 \mc M)^{\chi^{-i}}
\end{equation}
%
for $i \le p^n - p^{n-1}$. Observe that $\mc T^i M$ has the filtration $\mc M^{(pi)} \supset \mc M^{(pi - 1)} \supset \ldots \supset \mc M^{(pi - p)}$ with subquotients $T^{pi} \mc M, \ldots, T^{pi - p + 1} \mc M$.
Thus, since the category of $k[C]$-modules is semisimple, for $i \le p^n - p^{n-1}$:
%
\begin{align*}
\mc T^i \mc M &\cong T^{pi - p + 1} \mc M \oplus \cdots \oplus T^{pi} \mc M\\
&\cong T^1 \mc M \oplus (T^1 \mc M)^{\chi^{-1}} \oplus \cdots \oplus
(T^1 \mc M)^{\chi^{-p}}.
\end{align*}
%
By induction assumption, the $k[C]$-module structure of $\mc T^i \mc M$ is uniquely determined by the higher ramification data. Thus, by Lemma~\ref{lem:N+Nchi+...} for $N := T^1 \mc M$ and by~\eqref{eqn:TiM=T1M_chi} the $k[C]$-structure of the modules $T^i \mc M$ is uniquely determined by the higher ramification data for $i \le p^n - p^{n-1}$.
By a similar reasoning, $\tr_{X/X'}$ yields an isomorphism:
%
\[
T^{i + p^n - p^{n-1}} \mc M \cong (\mc T^i \mc M'')^{\chi^{-1??}}.
\]
%
Thus, by induction hypothesis for $\mc M''$, the $k[C]$-structure of $T^{i + p^n - p^{n-1}} \mc M$
is determined by higher ramification data as well.
\end{proof}
%
The method of proof of Main Theorem allows to obtain explicit formulas in the style of the result of Chevalley--Weil for
particular group. Assume that $G$ is a group with a normal $p$-Sylow subgroup $H$ of order~$p$. Let $C := G/H$. Then $G = H \rtimes_{\chi} C$
for a homomorphism $\chi : C \to \FF_p^{\times}$.
%
\begin{Proposition}
Keep the above notation. {\color{red} Assume that $k$ is algebraically closed.} If $G$ acts on a curve $X$ and the cover $X \to X/H$ is not \'{e}tale, then:
%
\[
H^1_{dR}(X) \cong \bigoplus_{W \in \Indec(C)} \mc V(W, p)^{\oplus a^{dR}_{Y, C}(W)} \oplus \mc V(W, p-1)^{\oplus b_W},
\]
%
where for any $W \in \Indec(k[C])$ the number $a_W$ is as in the equality~\eqref{eqn:cw} for the action of $C$ on $X$,
$a_W'$ is as in the equality~\eqref{eqn:cw} for the action of $C$ on $Y := X/H$ and
%
\begin{align*}
b_W &:= a^{dR}_{X, C}(W) - \frac 1p \sum_{i = 0}^{p-2} a^{dR}_{X, C}(W \otimes \chi^i) - a^{dR}_{Y, C}(W \otimes \chi).
\end{align*}
%
\end{Proposition}
\begin{proof}
Theorem~\ref{thm:cyclic_de_rham} easily implies that
%
\[
H^1_{dR}(X) \cong \bigoplus_{W \in \Indec(C)} \mc V(W, p)^{\oplus A_W} \oplus \mc V(W, p-1)^{\oplus B_W}
\]
%
for some $A_W, B_W \in \ZZ$. ??
\end{proof}
%
\section{An example -- a superelliptic curve with a metacyclic action}
%
Let $p > 2$ be a prime and $p \nmid m$ an natural number. Let $k$ be an algebraically closed field of characteristic~ $p$.
Fix a primitive root of unity $\zeta \in \ol{\FF}_p^{\times}$ of order $m \cdot (p-1)$.
Note that $\zeta^m \in \FF_p$.
In this section we compute the equivariant structure of the de Rham cohomology for the superelliptic curve $X$ with the affine part given by:
%
\begin{equation*}
y^m = x^{p^n} - x.
\end{equation*}
%
Note that for $m = n = 2$ this curve was considered e.g. in \cite[Section~4]{Bleher_Wood_polydiffs_structure}.
It is a curve of genus $\frac 12 (p^n - 1) (m-1)$ with an action of the group $G := H \rtimes_{\chi} C$,
where $H := \langle \sigma \rangle \cong \ZZ/p$, $C := \langle \rho \rangle \cong \ZZ/(m \cdot (p - 1))$ and
%
\[
\chi : C \to H, \quad \rho \mapsto \sigma^{\zeta^m}.
\]
%
This action is given by:
%
\begin{align*}
\sigma(x, y) &= (x+1, y),\\
\rho(x, y) &= (\zeta^m \cdot x, \zeta \cdot y).
\end{align*}
%
\begin{Proposition}
\[
H^1_{dR}(X) \cong ????.
\]
\end{Proposition}
%
Note that $X/G \cong \PP^1$ and the quotient map is given by $(x, y) \mapsto (x^p - x)^{p-1}$. Indeed, ????.
We claim that the set of branch points is given by $B := \{ Q_{\infty}, Q_0, Q_1, \ldots, Q_N \}$, where
$N := \frac{p^{n-1} - 1}{p - 1}$, $Q_0 = 0$, $Q_{\infty} = \infty$ and $Q_1, \ldots, Q_N$ are
the elements of the set
%
\[
\{ (\alpha^p - \alpha)^{p-1} : \alpha \in \FF_{p^n} \setminus \FF_p \}.
\]
%
Write $C' := \langle \rho^{p-1} \rangle \cong \ZZ/m$ and note that $C'$ is in the center of $G$. We claim that:
%
\begin{itemize}
\item $G_{Q_0}$ is the conjugacy class of the subgroup $C$,
\item $G_{Q_{\infty}} = G$ and the lower ramification jump at $Q_{\infty}$ equals $m$,
\item $G_{Q_i} = C'$ for $i = 1, \ldots, N$.
\end{itemize}
%
Indeed, ????. The ramification points of $\pi : X \to X/G$ are as follows:
%
\begin{itemize}
\item points $P_0^{(1)}, \ldots, P_0^{(p)}$ above $Q_0$
\item[] (their stabilizers are subgroups $C_1 = C$, $\ldots$, $C_p$
conjugated to $C$),
\item a point $P_{\infty}$ above $Q_{\infty}$ (its stabilizer is $G$),
\item points $P_i^{(1)}, \ldots, P_i^{(p \cdot (p-1))}$ above $Q_i$ for $i = 1, \ldots, N$
\item[] (their stabilizers equal $C'$).
\end{itemize}
%
The same points are in the ramification locus of the morphism $X \to X/C$ with the following
ramification groups:
%
\[
C_{P_i^{(j)}} =
\begin{cases*}
C, & \textrm{ if } (i, j) = \\
C', &
\end{cases*}
\]
\begin{align*}
C_{P_0^{(1)}} &= C\\
C_{P_0^{(i)}} &= C' \qquad \textrm{ for } i > 1,\\
C_{P_{\infty}} &= C\\
C_{P_i^{(j)}} &= C' \qquad \textrm{ for } i = 1, \ldots, N, \, j = 1, \ldots, p \cdot (p-1).
\end{align*}
Note that $Y := X/H$ is given by the equation:
%
\[
y^m = z^{p^{n-1}} + \ldots + z^p + z.
\]
%
Let $\psi : C \to k^{\times}$ be a primitive character. We claim that:
%
\begin{align*}
a^{dR}_{X, C}(\psi^i) &=
\begin{cases}
p \cdot N, & \textrm{ if } m \nmid i,\\
0, & \textrm{ otherwise. }
\end{cases}\\
a^{dR}_{Y, C}(\psi^i) &=
\begin{cases}
\frac{p^{n-1} - 1}{p - 1}, & \textrm{ if } m \nmid i,\\
0, & \textrm{ otherwise. }
\end{cases}
\end{align*}
%
%
\bibliography{bibliografia,AKGeneral}
%
% \bibliography{AKGeneral}
\end{document}