Zaktualizuj 'hw3.py'

zmiana outputu
This commit is contained in:
Aleksy Wróblewski 2018-06-26 15:26:07 +00:00
parent 14d223b47b
commit c93bc4b37e

348
hw3.py
View File

@ -1,173 +1,177 @@
from sys import argv
from fractions import gcd
class Polynomial():
def __init__(self, lst, mod):
self.poly = list(map(lambda x: x % mod, lst))
self.mod = mod
self.normalize()
def normalize(self):
while self.poly and self.poly[-1] == 0:
self.poly.pop()
#zwraca jednomian stopnia n
@staticmethod
def Monomial(n, c, mod):
zeros = [0]*n
zeros.append(c)
return Polynomial(zeros, mod)
def __add__(self, p2):
p1 = self
len_p1, len_p2= len(p1.poly), len(p2.poly)
res = [0] * max(len_p1, len_p2)
if len_p1 > len_p2:
for _ in range(len_p1-len_p2):
p2.poly.append(0)
else:
for _ in range(len_p2-len_p1):
p1.poly.append(0)
for i in range(len(res)):
res[i] = (p1.poly[i] + p2.poly[i]) % self.mod
return Polynomial(res, self.mod)
def __sub__(self, p2):
p1 = self
res = []
len_p2 = len(p2.poly)
for i in range(len(p1.poly)):
if i < len_p2:
res.append(p1.poly[i] - p2.poly[i] % self.mod)
else:
res.append(p1.poly[i])
return Polynomial(res, self.mod)
def __mul__(self, p2):
res = [0]*(len(self.poly)+len(p2.poly)-1)
for i, x1 in enumerate(self.poly):
for j, x2 in enumerate(p2.poly):
res[i+j] += x1 * x2 % self.mod
return Polynomial(res, self.mod)
def __truediv__(self, p2):
p1 = self
m = self.mod
if len(p1.poly) < len(p2.poly):
return p1
if len(p2.poly) == 0:
raise ZeroDivisionError
divisor_coeff = p2.poly[-1]
divisor_exp = len(p2.poly) - 1
while len(p1.poly) >= len(p2.poly):
max_coeff_p1 = p1.poly[-1] #wspolczynnik przy najwyzszej potedze
try:
tmp_coeff = modDiv(max_coeff_p1, divisor_coeff, m)
except ZeroDivisionError as e:
raise e
tmp_exp = len(p1.poly)-1 - divisor_exp
tmp = [0] * tmp_exp
tmp.append(tmp_coeff)
sub = Polynomial(tmp, m) * p2
p1 = p1 - sub
p1.normalize()
return Polynomial(p1.poly, m)
def modDiv(a, b, m): # a*b^-1 (mod m)
if gcd(b, m) != 1:
raise ZeroDivisionError
else:
return (a * modinv(b, m)) % m
#rozszerzony algorytm euklidesa
def egcd(a, b):
if a == 0:
return (b, 0, 1)
else:
g, y, x = egcd(b % a, a)
return (g, x - (b // a) * y, y)
def modinv(a, m):
g, x, y = egcd(a, m)
return x % m
#lista stringow binarnych -> lista intow 0/1
def bin_str_to_list(lst):
res = []
for elem in lst:
for ch in elem:
res.append(int(ch))
return res
def mod8format(lst):
while len(lst) % 8 != 0:
lst.append(0)
return lst
def to_bin(x):
data = bin(ord(x)).replace('b', '')
while len(data) != 8:
if len(data) < 8:
data = str(0) + data
else:
data.replace(data[0], '')
return data
def to_ascii_val(lst):
sum = 0
for i in range(len(lst)):
if lst[i] == 1:
sum += 2**(7-i)
return chr(sum)
def data():
p = bin_str_to_list(list(map(lambda x: to_bin(x), m)))
p.reverse()
Lx = Polynomial([1] * 16, 2) #L(x)
X16 = Polynomial.Monomial(16, 1, 2) #X^16
Gx = Polynomial([1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1], 2) #G(x)
return (p, Lx, X16, Gx)
def fcs(m):
p, Lx, X16, Gx = data()
Mx = Polynomial(p, 2) #M(x) #X^16
Xnsub16 = Polynomial.Monomial(len(m)*8, 1, 2) #X^(n-16)
rhs = Xnsub16 * Lx
lhs = X16 * Mx
xor = lhs + rhs
fcs = xor/Gx
#algorytm dzielenia ucina zera, trzeba dopelnic do 16 bitow
for i in range(16 - len(fcs.poly)):
fcs.poly.append(0)
fcs.poly.reverse()
return fcs.poly
def check(m):
p, Lx, X16, Gx = data()
Xn = Polynomial.Monomial(len(p), 1, 2) #X^n
Cx = Polynomial(p, 2)
Cx = X16 * Cx
Cx.poly = mod8format(Cx.poly)
Sx = (Cx + Xn * Lx) / Gx
if Sx.poly == []:
return True
return False
def main():
global m
m = list(argv[1])
mode = argv[2] # flagi -e -d (encode, decode)
if mode == '-e':
res = fcs(m)
fcs_ch1 = to_ascii_val(res[:8])
fcs_ch2 = to_ascii_val(res[8:])
m.append(fcs_ch1)
m.append(fcs_ch2)
print(''.join(m))
elif mode == '-d':
print(check(m))
if __name__ == '__main__':
from sys import argv
from fractions import gcd
from ast import literal_eval
class Polynomial():
def __init__(self, lst, mod):
self.poly = list(map(lambda x: x % mod, lst))
self.mod = mod
self.normalize()
def normalize(self):
while self.poly and self.poly[-1] == 0:
self.poly.pop()
#zwraca jednomian stopnia n
@staticmethod
def Monomial(n, c, mod):
zeros = [0]*n
zeros.append(c)
return Polynomial(zeros, mod)
def __add__(self, p2):
p1 = self
len_p1, len_p2= len(p1.poly), len(p2.poly)
res = [0] * max(len_p1, len_p2)
if len_p1 > len_p2:
for _ in range(len_p1-len_p2):
p2.poly.append(0)
else:
for _ in range(len_p2-len_p1):
p1.poly.append(0)
for i in range(len(res)):
res[i] = (p1.poly[i] + p2.poly[i]) % self.mod
return Polynomial(res, self.mod)
def __sub__(self, p2):
p1 = self
res = []
len_p2 = len(p2.poly)
for i in range(len(p1.poly)):
if i < len_p2:
res.append(p1.poly[i] - p2.poly[i] % self.mod)
else:
res.append(p1.poly[i])
return Polynomial(res, self.mod)
def __mul__(self, p2):
res = [0]*(len(self.poly)+len(p2.poly)-1)
for i, x1 in enumerate(self.poly):
for j, x2 in enumerate(p2.poly):
res[i+j] += x1 * x2 % self.mod
return Polynomial(res, self.mod)
def __truediv__(self, p2):
p1 = self
m = self.mod
if len(p1.poly) < len(p2.poly):
return p1
if len(p2.poly) == 0:
raise ZeroDivisionError
divisor_coeff = p2.poly[-1]
divisor_exp = len(p2.poly) - 1
while len(p1.poly) >= len(p2.poly):
max_coeff_p1 = p1.poly[-1] #wspolczynnik przy najwyzszej potedze
try:
tmp_coeff = modDiv(max_coeff_p1, divisor_coeff, m)
except ZeroDivisionError as e:
raise e
tmp_exp = len(p1.poly)-1 - divisor_exp
tmp = [0] * tmp_exp
tmp.append(tmp_coeff)
sub = Polynomial(tmp, m) * p2
p1 = p1 - sub
p1.normalize()
return Polynomial(p1.poly, m)
def modDiv(a, b, m): # a*b^-1 (mod m)
if gcd(b, m) != 1:
raise ZeroDivisionError
else:
return (a * modinv(b, m)) % m
#rozszerzony algorytm euklidesa
def egcd(a, b):
if a == 0:
return (b, 0, 1)
else:
g, y, x = egcd(b % a, a)
return (g, x - (b // a) * y, y)
def modinv(a, m):
g, x, y = egcd(a, m)
return x % m
#lista stringow binarnych -> lista intow 0/1
def bin_str_to_list(lst):
res = []
for elem in lst:
for ch in elem:
res.append(int(ch))
return res
def mod8format(lst):
while len(lst) % 8 != 0:
lst.append(0)
return lst
def to_bin(x):
data = bin(ord(x)).replace('b', '')
while len(data) != 8:
if len(data) < 8:
data = str(0) + data
else:
data = data[1:]
return data
def to_ascii_val(lst):
sum = 0
for i in range(len(lst)):
if lst[i] == 1:
sum += 2**(7-i)
return chr(sum)
def data():
p = bin_str_to_list(list(map(lambda x: to_bin(x), m)))
p.reverse()
Lx = Polynomial([1] * 16, 2) #L(x)
X16 = Polynomial.Monomial(16, 1, 2) #X^16
Gx = Polynomial([1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1], 2) #G(x)
return (p, Lx, X16, Gx)
def fcs(m):
p, Lx, X16, Gx = data()
Mx = Polynomial(p, 2) #M(x) #X^16
Xnsub16 = Polynomial.Monomial(len(m)*8, 1, 2) #X^(n-16)
rhs = Xnsub16 * Lx
lhs = X16 * Mx
xor = lhs + rhs
fcs = xor/Gx
#algorytm dzielenia ucina zera, trzeba dopelnic do 16 bitow
for i in range(16 - len(fcs.poly)):
fcs.poly.append(0)
fcs.poly.reverse()
return fcs.poly
def check(m):
p, Lx, X16, Gx = data()
Xn = Polynomial.Monomial(len(p), 1, 2) #X^n
Cx = Polynomial(p, 2)
Cx = X16 * Cx
Cx.poly = mod8format(Cx.poly)
Sx = (Cx + Xn * Lx) / Gx
if Sx.poly == []:
return True
return False
def main():
global m
m = list(argv[2])
mode = argv[1] # flagi -e -d (encode, decode)
if mode == '-e':
res = fcs(m)
fcs_ch1 = to_ascii_val(res[:8])
fcs_ch2 = to_ascii_val(res[8:])
m.append(fcs_ch1)
m.append(fcs_ch2)
print(m)
elif mode == '-d':
to_check = literal_eval(argv[3])
m += to_check
print(check(m))
if __name__ == '__main__':
main()