From db0b78d7715f350394c5427811d671bd5c25b334 Mon Sep 17 00:00:00 2001 From: Szymon Wojciechowski Date: Thu, 28 Jun 2018 09:02:32 +0000 Subject: [PATCH] Delete 'poly.py' --- poly.py | 75 --------------------------------------------------------- 1 file changed, 75 deletions(-) delete mode 100644 poly.py diff --git a/poly.py b/poly.py deleted file mode 100644 index d9ddd32..0000000 --- a/poly.py +++ /dev/null @@ -1,75 +0,0 @@ -import sys -import ast - -class Polynomial: - - n = 0 - - def __init__(self, coef_list): - self.degree = len(coef_list) - 1 - self.coefficients = [x % Polynomial.n for x in coef_list] - - @staticmethod - def add(p1, p2): - result = [] - f = p1.coefficients - g = p2.coefficients - if len(f) >= len(g): - result = f - for i in range(0, len(g)): - result[i] = f[i] + g[i] - else: - result = g - for i in range(0, len(f)): - result[i] = f[i] + g[i] - result = [x % int(Polynomial.n) for x in result] - return Polynomial(result) - - @staticmethod - def multiply(p1, p2): - result = [0] * (p1.degree + p2.degree + 1) - f = p1.coefficients - g = p2.coefficients - for i in range(0, len(f)): - for j in range(0, len(g)): - result[i+j] += f[i] * g[j] - result = [x % int(Polynomial.n) for x in result] - return Polynomial(result) - - @staticmethod - def divide(p1, p2): - def inverse(x): - for i in range(1, int(Polynomial.n)): - r = (i * x) % int(Polynomial.n) - if r == 1: - break - else: - raise ZeroDivisionError - return i - if p1.degree < p2.degree: - return p1 - f = p1.coefficients - g = p2.coefficients - g_lead_coef = g[-1] - g_deg = p2.degree - while len(f) >= len(g): - f_lead_coef = f[-1] - tmp_coef = f_lead_coef * inverse(g_lead_coef) - tmp_exp = len(f) - 1 - g_deg - tmp = [] - for _ in range(tmp_exp): - tmp.append(0) - tmp.append(tmp_coef) - tmp_poly = Polynomial(tmp) - sub = Polynomial.multiply(p2, tmp_poly) - f = [x - y for x, y in zip(f, sub.coefficients)] - f = [x % int(Polynomial.n) for x in f] - while f and f[-1] == 0: - f.pop() - return Polynomial(f) - - @staticmethod - def gcd(p1, p2): - if len(p2.coefficients) == 0: - return p1 - return Polynomial.gcd(p2, Polynomial.divide(p1, p2))