Compare commits

...

10 Commits
master ... zad3

3 changed files with 208 additions and 0 deletions

48
Ring.py Normal file
View File

@ -0,0 +1,48 @@
from fractions import gcd
class Modulo:
def __init__(self, n):
self.n = int(n)
self.modulo_set = list(range(self.n))
self.answer = []
def get_inverse_elements(self):
self.inverse_elements = []
for i in self.modulo_set:
if gcd(i, self.n) == 1:
self.inverse_elements.append(i)
self.answer.append(self.inverse_elements)
def get_zero_divisors(self):
self.zero_divisors = []
for i in self.modulo_set:
for j in self.modulo_set:
if (i * j) % self.n == 0 and i != 0 and j != 0:
self.zero_divisors.append(i)
self.answer.append(list(set(self.zero_divisors)))
def get_nilpotent_elements(self):
self.nilpotent_elements = []
for i in self.modulo_set:
for j in range(1, len(self.inverse_elements) + 1):
if (i**j) % self.n == 0 and i != 0:
self.nilpotent_elements.append(i)
self.answer.append(list(set(self.nilpotent_elements)))
def get_idempotent_elements(self):
self.idempotent_elements = []
for i in self.modulo_set:
if (i*i) % self.n == i:
self.idempotent_elements.append(i)
self.answer.append(self.idempotent_elements)
def get_all(self):
self.get_inverse_elements()
self.get_zero_divisors()
self.get_nilpotent_elements()
self.get_idempotent_elements()
return self.answer
s = Modulo(input("Enter n: "))
print(s.get_all())

85
crc16.py Normal file
View File

@ -0,0 +1,85 @@
from poly import Polynomial
import sys
import ast
Polynomial.n = 2
def normalize_byte(data):
while len(data) != 8:
if len(data) < 8:
data = str(0) + data
else:
data = data[1:]
return data
def encode(in_data):
data = in_data
data = list(data)
data_binary = [bin(ord(char)).replace('b', '') for char in data]
data_binary = [normalize_byte(byte) for byte in data_binary]
data_binary = [int(bit) for bit in list(''.join(data_binary))]
data_binary.reverse()
M = [0] * 16 + data_binary
L = [0] * (len(data_binary)) + [1] * 16
G = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1]
result_poly = Polynomial.divide(Polynomial.add(Polynomial(M), Polynomial(L)), Polynomial(G))
result = result_poly.coefficients + [0] * (16 - len(result_poly.coefficients))
result.reverse()
data_binary.reverse()
data_binary = data_binary + result
data_binary = [data_binary[i:i+8] for i in range(0, len(data_binary), 8)]
data_binary = [int(''.join(map(str, byte)), 2) for byte in data_binary]
fcs = [hex(byte) for byte in data_binary]
fcs = fcs[-2:]
data = [chr(byte) for byte in data_binary]
data = ''.join(data[0:-2])
return data, fcs
def check_fcs(in_data, fcs):
data = in_data
data = list(data)
data_binary = [bin(ord(char)).replace('b', '') for char in data]
data_binary = [normalize_byte(byte) for byte in data_binary]
data_binary = [int(bit) for bit in list(''.join(data_binary))]
fcs_binary = [bin(int(in_hex, 16)).replace('b', '') for in_hex in fcs]
fcs_binary = [normalize_byte(byte) for byte in fcs_binary]
fcs_binary = [int(bit) for bit in list(''.join(fcs_binary))]
data_binary += fcs_binary
data_binary.reverse()
C = [0] * 16 + data_binary
L = [0] * len(data_binary) + [1] * 16
G = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1]
S = Polynomial.divide(Polynomial.add(Polynomial(C), Polynomial(L)), Polynomial(G))
if S.coefficients == []:
return True
return False
def main():
try:
if sys.argv[1] == '-e' or sys.argv[1] == '-encode':
arg, fcs = encode(sys.argv[2])
print(arg, fcs)
print(check_fcs(arg, fcs)) # powinno zawsze zwracać true
elif sys.argv[1] == '-c' or sys.argv[1] == '-check':
arg = sys.argv[2]
fcs = ast.literal_eval(sys.argv[3])
print(check_fcs(arg, fcs))
else:
raise IndexError
except IndexError:
print("To encode: python3 CRC16.py -e [argument]\nTo check result: python3 CRC16.py -c [argument] [fcs]")
if __name__ == "__main__":
main()

75
poly.py Normal file
View File

@ -0,0 +1,75 @@
import sys
import ast
class Polynomial:
n = 0
def __init__(self, coef_list):
self.degree = len(coef_list) - 1
self.coefficients = [x % Polynomial.n for x in coef_list]
@staticmethod
def add(p1, p2):
result = []
f = p1.coefficients
g = p2.coefficients
if len(f) >= len(g):
result = f
for i in range(0, len(g)):
result[i] = f[i] + g[i]
else:
result = g
for i in range(0, len(f)):
result[i] = f[i] + g[i]
result = [x % int(Polynomial.n) for x in result]
return Polynomial(result)
@staticmethod
def multiply(p1, p2):
result = [0] * (p1.degree + p2.degree + 1)
f = p1.coefficients
g = p2.coefficients
for i in range(0, len(f)):
for j in range(0, len(g)):
result[i+j] += f[i] * g[j]
result = [x % int(Polynomial.n) for x in result]
return Polynomial(result)
@staticmethod
def divide(p1, p2):
def inverse(x):
for i in range(1, int(Polynomial.n)):
r = (i * x) % int(Polynomial.n)
if r == 1:
break
else:
raise ZeroDivisionError
return i
if p1.degree < p2.degree:
return p1
f = p1.coefficients
g = p2.coefficients
g_lead_coef = g[-1]
g_deg = p2.degree
while len(f) >= len(g):
f_lead_coef = f[-1]
tmp_coef = f_lead_coef * inverse(g_lead_coef)
tmp_exp = len(f) - 1 - g_deg
tmp = []
for _ in range(tmp_exp):
tmp.append(0)
tmp.append(tmp_coef)
tmp_poly = Polynomial(tmp)
sub = Polynomial.multiply(p2, tmp_poly)
f = [x - y for x, y in zip(f, sub.coefficients)]
f = [x % int(Polynomial.n) for x in f]
while f and f[-1] == 0:
f.pop()
return Polynomial(f)
@staticmethod
def gcd(p1, p2):
if len(p2.coefficients) == 0:
return p1
return Polynomial.gcd(p2, Polynomial.divide(p1, p2))