zad 3 #29
173
hw3.py
Normal file
173
hw3.py
Normal file
@ -0,0 +1,173 @@
|
||||
from sys import argv
|
||||
from fractions import gcd
|
||||
|
||||
class Polynomial():
|
||||
def __init__(self, lst, mod):
|
||||
self.poly = list(map(lambda x: x % mod, lst))
|
||||
self.mod = mod
|
||||
self.normalize()
|
||||
def normalize(self):
|
||||
while self.poly and self.poly[-1] == 0:
|
||||
self.poly.pop()
|
||||
|
||||
#zwraca jednomian stopnia n
|
||||
@staticmethod
|
||||
def Monomial(n, c, mod):
|
||||
zeros = [0]*n
|
||||
zeros.append(c)
|
||||
return Polynomial(zeros, mod)
|
||||
|
||||
def __add__(self, p2):
|
||||
p1 = self
|
||||
len_p1, len_p2= len(p1.poly), len(p2.poly)
|
||||
res = [0] * max(len_p1, len_p2)
|
||||
if len_p1 > len_p2:
|
||||
for _ in range(len_p1-len_p2):
|
||||
p2.poly.append(0)
|
||||
else:
|
||||
for _ in range(len_p2-len_p1):
|
||||
p1.poly.append(0)
|
||||
|
||||
for i in range(len(res)):
|
||||
res[i] = (p1.poly[i] + p2.poly[i]) % self.mod
|
||||
return Polynomial(res, self.mod)
|
||||
|
||||
def __sub__(self, p2):
|
||||
p1 = self
|
||||
res = []
|
||||
len_p2 = len(p2.poly)
|
||||
for i in range(len(p1.poly)):
|
||||
if i < len_p2:
|
||||
res.append(p1.poly[i] - p2.poly[i] % self.mod)
|
||||
else:
|
||||
res.append(p1.poly[i])
|
||||
return Polynomial(res, self.mod)
|
||||
|
||||
def __mul__(self, p2):
|
||||
res = [0]*(len(self.poly)+len(p2.poly)-1)
|
||||
for i, x1 in enumerate(self.poly):
|
||||
for j, x2 in enumerate(p2.poly):
|
||||
res[i+j] += x1 * x2 % self.mod
|
||||
return Polynomial(res, self.mod)
|
||||
|
||||
def __truediv__(self, p2):
|
||||
p1 = self
|
||||
m = self.mod
|
||||
|
||||
if len(p1.poly) < len(p2.poly):
|
||||
return p1
|
||||
|
||||
if len(p2.poly) == 0:
|
||||
raise ZeroDivisionError
|
||||
|
||||
divisor_coeff = p2.poly[-1]
|
||||
divisor_exp = len(p2.poly) - 1
|
||||
while len(p1.poly) >= len(p2.poly):
|
||||
max_coeff_p1 = p1.poly[-1] #wspolczynnik przy najwyzszej potedze
|
||||
try:
|
||||
tmp_coeff = modDiv(max_coeff_p1, divisor_coeff, m)
|
||||
except ZeroDivisionError as e:
|
||||
raise e
|
||||
|
||||
tmp_exp = len(p1.poly)-1 - divisor_exp
|
||||
tmp = [0] * tmp_exp
|
||||
tmp.append(tmp_coeff)
|
||||
sub = Polynomial(tmp, m) * p2
|
||||
p1 = p1 - sub
|
||||
p1.normalize()
|
||||
return Polynomial(p1.poly, m)
|
||||
|
||||
def modDiv(a, b, m): # a*b^-1 (mod m)
|
||||
if gcd(b, m) != 1:
|
||||
raise ZeroDivisionError
|
||||
else:
|
||||
return (a * modinv(b, m)) % m
|
||||
#rozszerzony algorytm euklidesa
|
||||
def egcd(a, b):
|
||||
if a == 0:
|
||||
return (b, 0, 1)
|
||||
else:
|
||||
g, y, x = egcd(b % a, a)
|
||||
return (g, x - (b // a) * y, y)
|
||||
|
||||
def modinv(a, m):
|
||||
g, x, y = egcd(a, m)
|
||||
return x % m
|
||||
#lista stringow binarnych -> lista intow 0/1
|
||||
def bin_str_to_list(lst):
|
||||
res = []
|
||||
for elem in lst:
|
||||
for ch in elem:
|
||||
res.append(int(ch))
|
||||
return res
|
||||
|
||||
def mod8format(lst):
|
||||
while len(lst) % 8 != 0:
|
||||
lst.append(0)
|
||||
return lst
|
||||
|
||||
def to_bin(x):
|
||||
data = bin(ord(x)).replace('b', '')
|
||||
while len(data) != 8:
|
||||
if len(data) < 8:
|
||||
data = str(0) + data
|
||||
else:
|
||||
data.replace(data[0], '')
|
||||
return data
|
||||
|
||||
def to_ascii_val(lst):
|
||||
sum = 0
|
||||
for i in range(len(lst)):
|
||||
if lst[i] == 1:
|
||||
sum += 2**(7-i)
|
||||
return chr(sum)
|
||||
|
||||
def data():
|
||||
p = bin_str_to_list(list(map(lambda x: to_bin(x), m)))
|
||||
p.reverse()
|
||||
Lx = Polynomial([1] * 16, 2) #L(x)
|
||||
X16 = Polynomial.Monomial(16, 1, 2) #X^16
|
||||
Gx = Polynomial([1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1], 2) #G(x)
|
||||
return (p, Lx, X16, Gx)
|
||||
|
||||
def fcs(m):
|
||||
p, Lx, X16, Gx = data()
|
||||
Mx = Polynomial(p, 2) #M(x) #X^16
|
||||
Xnsub16 = Polynomial.Monomial(len(m)*8, 1, 2) #X^(n-16)
|
||||
rhs = Xnsub16 * Lx
|
||||
lhs = X16 * Mx
|
||||
xor = lhs + rhs
|
||||
fcs = xor/Gx
|
||||
#algorytm dzielenia ucina zera, trzeba dopelnic do 16 bitow
|
||||
for i in range(16 - len(fcs.poly)):
|
||||
fcs.poly.append(0)
|
||||
fcs.poly.reverse()
|
||||
return fcs.poly
|
||||
|
||||
def check(m):
|
||||
p, Lx, X16, Gx = data()
|
||||
Xn = Polynomial.Monomial(len(p), 1, 2) #X^n
|
||||
Cx = Polynomial(p, 2)
|
||||
Cx = X16 * Cx
|
||||
Cx.poly = mod8format(Cx.poly)
|
||||
Sx = (Cx + Xn * Lx) / Gx
|
||||
if Sx.poly == []:
|
||||
return True
|
||||
return False
|
||||
|
||||
def main():
|
||||
global m
|
||||
m = list(argv[1])
|
||||
mode = argv[2] # flagi -e -d (encode, decode)
|
||||
if mode == '-e':
|
||||
res = fcs(m)
|
||||
fcs_ch1 = to_ascii_val(res[:8])
|
||||
fcs_ch2 = to_ascii_val(res[8:])
|
||||
m.append(fcs_ch1)
|
||||
m.append(fcs_ch2)
|
||||
print(''.join(m))
|
||||
elif mode == '-d':
|
||||
print(check(m))
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in New Issue
Block a user