zad 4 #32
166
hw4.py
166
hw4.py
@ -1,84 +1,84 @@
|
||||
from poly import Polynomial
|
||||
from sys import argv
|
||||
from ast import literal_eval
|
||||
from fractions import gcd
|
||||
|
||||
class QuotientRing():
|
||||
def __init__(self, f, m):
|
||||
self.f = Polynomial(f, m)
|
||||
self.m = m
|
||||
self.remainders = self.remainders()
|
||||
self.reversibles = self.reversibles()
|
||||
self.zero_divisors = self.zero_divisors()
|
||||
self.idempotent = self.idempotent()
|
||||
self.nilpotent = self.nilpotent()
|
||||
|
||||
def remainders(self): #n - exponent
|
||||
rems = [] #lista reszt
|
||||
m = self.m
|
||||
t = [0]
|
||||
i = 0
|
||||
while len(t) < len(self.f.poly):
|
||||
rems.append(Polynomial(t, m))
|
||||
i = (i + 1) % m
|
||||
t[0] = i
|
||||
if i == 0:
|
||||
if len(t) == 1:
|
||||
t.append(1)
|
||||
else:
|
||||
t[1] += 1
|
||||
for j in range(1, len(t)):
|
||||
if t[j] == 0 or t[j] % m != 0:
|
||||
break
|
||||
temp = t[j] % m
|
||||
t[j] = 0
|
||||
if temp == 0:
|
||||
if (j + 1) < len(t):
|
||||
t[j+1] += 1
|
||||
else:
|
||||
t.append(1)
|
||||
return rems
|
||||
|
||||
def reversibles(self):
|
||||
return [ rem for rem in self.remainders if len(rem.poly_gcd(self.f).poly) == 1 ]
|
||||
|
||||
#dopelnienie elementow odwracalnych
|
||||
def zero_divisors(self):
|
||||
return [ rem for rem in self.remainders if rem not in self.reversibles ]
|
||||
|
||||
def idempotent(self):
|
||||
idems = []
|
||||
for rem in self.remainders:
|
||||
if (rem * rem / self.f) == (rem / self.f):
|
||||
idems.append(rem)
|
||||
try:
|
||||
if idems[0].poly == []: #implementacja wielomianow ucina zera
|
||||
idems[0].poly = [0]
|
||||
except IndexError:
|
||||
return idems
|
||||
return idems
|
||||
|
||||
def nilpotent(self):
|
||||
nils = []
|
||||
phi = len([ i for i in range(1, self.m) if gcd(i, self.m) == 1 ])
|
||||
for zero_div in self.zero_divisors:
|
||||
for i in range(self.m):
|
||||
if len((zero_div ** i / self.f).poly) == 0:
|
||||
nils.append(zero_div)
|
||||
break
|
||||
return nils
|
||||
|
||||
def main():
|
||||
m = int(argv[1])
|
||||
f = literal_eval(argv[2])
|
||||
qr = QuotientRing(f, m)
|
||||
out = [
|
||||
[ rev.poly for rev in qr.reversibles ],
|
||||
[ zero_div.poly for zero_div in qr.zero_divisors ],
|
||||
[ nil.poly for nil in qr.nilpotent ],
|
||||
[ idem.poly for idem in qr.idempotent ]
|
||||
]
|
||||
print(*out, sep='\n')
|
||||
|
||||
if __name__ == '__main__':
|
||||
from poly import Polynomial
|
||||
from sys import argv
|
||||
from ast import literal_eval
|
||||
from fractions import gcd
|
||||
|
||||
class QuotientRing():
|
||||
def __init__(self, f, m):
|
||||
self.f = Polynomial(f, m)
|
||||
self.m = m
|
||||
self.remainders = self.remainders()
|
||||
self.reversibles = self.reversibles()
|
||||
self.zero_divisors = self.zero_divisors()
|
||||
self.idempotent = self.idempotent()
|
||||
self.nilpotent = self.nilpotent()
|
||||
|
||||
def remainders(self): #n - exponent
|
||||
rems = [] #lista reszt
|
||||
m = self.m
|
||||
t = [0]
|
||||
i = 0
|
||||
while len(t) < len(self.f.poly):
|
||||
rems.append(Polynomial(t, m))
|
||||
i = (i + 1) % m
|
||||
t[0] = i
|
||||
if i == 0:
|
||||
if len(t) == 1:
|
||||
t.append(1)
|
||||
else:
|
||||
t[1] += 1
|
||||
for j in range(1, len(t)):
|
||||
if t[j] == 0 or t[j] % m != 0:
|
||||
break
|
||||
temp = t[j] % m
|
||||
t[j] = 0
|
||||
if temp == 0:
|
||||
if (j + 1) < len(t):
|
||||
t[j+1] += 1
|
||||
else:
|
||||
t.append(1)
|
||||
return rems
|
||||
|
||||
def reversibles(self):
|
||||
return [ rem for rem in self.remainders if len(rem.poly_gcd(self.f).poly) == 1 ]
|
||||
|
||||
#dopelnienie elementow odwracalnych
|
||||
def zero_divisors(self):
|
||||
return [ rem for rem in self.remainders if rem not in self.reversibles ]
|
||||
|
||||
def idempotent(self):
|
||||
idems = []
|
||||
for rem in self.remainders:
|
||||
if (rem * rem % self.f) == (rem % self.f):
|
||||
idems.append(rem)
|
||||
try:
|
||||
if idems[0].poly == []: #implementacja wielomianow ucina zera
|
||||
idems[0].poly = [0]
|
||||
except IndexError:
|
||||
return idems
|
||||
return idems
|
||||
|
||||
def nilpotent(self):
|
||||
nils = []
|
||||
phi = len([ i for i in range(1, self.m) if gcd(i, self.m) == 1 ])
|
||||
for zero_div in self.zero_divisors:
|
||||
for i in range(self.m):
|
||||
if len((zero_div ** i % self.f).poly) == 0:
|
||||
nils.append(zero_div)
|
||||
break
|
||||
return nils
|
||||
|
||||
def main():
|
||||
m = int(argv[1])
|
||||
f = literal_eval(argv[2])
|
||||
qr = QuotientRing(f, m)
|
||||
out = [
|
||||
[ rev.poly for rev in qr.reversibles ],
|
||||
[ zero_div.poly for zero_div in qr.zero_divisors ],
|
||||
[ nil.poly for nil in qr.nilpotent ],
|
||||
[ idem.poly for idem in qr.idempotent ]
|
||||
]
|
||||
print(*out, sep='\n')
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in New Issue
Block a user