Zadanie 4 #34
@ -1,21 +0,0 @@
|
|||||||
## Zadanie
|
|
||||||
|
|
||||||
Napisać algorytm, który dla danego `n ∈ ℕ` znajdzie wszystkie:
|
|
||||||
|
|
||||||
1. elementy odwracalne
|
|
||||||
2. dzielniki zera
|
|
||||||
3. elementy nilpotentne
|
|
||||||
4. elementy idempotentne
|
|
||||||
|
|
||||||
w pierścieniu `{ℤ/nℤ, +, ⋅}`.
|
|
||||||
|
|
||||||
Termin: 31.05
|
|
||||||
|
|
||||||
### Przykłady:
|
|
||||||
|
|
||||||
> Input: `4`
|
|
||||||
> Output: `[[1,3], [0,2], [0,2], [0,1]]`
|
|
||||||
|
|
||||||
> Input: `6`
|
|
||||||
> Output: `[[1,5], [0,2,3,4], [0], [0,1,3,4]]`
|
|
||||||
|
|
@ -1,19 +0,0 @@
|
|||||||
## Zadanie
|
|
||||||
|
|
||||||
Napisać program, który dla danego pierścienia współczynników `R = ℤ/nℤ, n ∈ ℕ` oraz wielomianów `f,g ∈ R[x] ` zmiennej `x ` znajdzie:
|
|
||||||
|
|
||||||
1. iloczyn `f⋅g ∈ R[x]`
|
|
||||||
2. klasę reszty `f ∈ R[x]/(g)`
|
|
||||||
3. największy wspólny dzielnik `nwd(f,g)` korzystając z algorytmu Euklidesa.
|
|
||||||
|
|
||||||
**Uwaga**: wielomiany są podawane jako ciąg współczynników **od wyrazu wolnego, do współczynnika wiodącego**.
|
|
||||||
|
|
||||||
Termin: 07.06
|
|
||||||
|
|
||||||
### Przykłady:
|
|
||||||
|
|
||||||
> Input: `2, [1,1,1,0,1], [0,1,1]` (i.e. `f = 1 + x + x² + x⁴, g = x² + x`)
|
|
||||||
> Output: `[[0,1,0,0,1,1,1], [1,1], [1,1]]`
|
|
||||||
|
|
||||||
> Input: `6, [2,1,0,2,1,3], [1,0,0,5]`
|
|
||||||
> Output: `[[3,1,0,5,0,1,4,5,5], [5,2,1], DivisionError]`
|
|
83
Zadanie-4/poly.py
Normal file
83
Zadanie-4/poly.py
Normal file
@ -0,0 +1,83 @@
|
|||||||
|
import sys
|
||||||
|
import ast
|
||||||
|
|
||||||
|
class Polynomial:
|
||||||
|
|
||||||
|
n = 0
|
||||||
|
|
||||||
|
def __init__(self, coeff_list):
|
||||||
|
self.degree = len(coeff_list) - 1
|
||||||
|
self.coefficients = [x % Polynomial.n for x in coeff_list]
|
||||||
|
|
||||||
|
def __pow__(self, n):
|
||||||
|
result = self
|
||||||
|
for _ in range(n):
|
||||||
|
result = Polynomial.multiply(result, result)
|
||||||
|
return result
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def add(p1, p2):
|
||||||
|
result = []
|
||||||
|
f = p1.coefficients
|
||||||
|
g = p2.coefficients
|
||||||
|
if len(f) >= len(g):
|
||||||
|
result = f
|
||||||
|
for i in range(len(g)):
|
||||||
|
result[i] = f[i] + g[i]
|
||||||
|
else:
|
||||||
|
result = g
|
||||||
|
for i in range(len(f)):
|
||||||
|
result[i] = f[i] + g[i]
|
||||||
|
result = [x % int(Polynomial.n) for x in result]
|
||||||
|
return Polynomial(result)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def multiply(p1, p2):
|
||||||
|
result = [0] * (p1.degree + p2.degree + 1)
|
||||||
|
f = p1.coefficients
|
||||||
|
g = p2.coefficients
|
||||||
|
for i in range(len(f)):
|
||||||
|
for j in range(len(g)):
|
||||||
|
result[i+j] += f[i] * g[j]
|
||||||
|
result = [x % int(Polynomial.n) for x in result]
|
||||||
|
return Polynomial(result)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def divide(p1, p2):
|
||||||
|
|
||||||
|
def inverse(x):
|
||||||
|
for i in range(1, int(Polynomial.n)):
|
||||||
|
r = (i * x) % int(Polynomial.n)
|
||||||
|
if r == 1:
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
raise ZeroDivisionError
|
||||||
|
return i
|
||||||
|
|
||||||
|
if p1.degree < p2.degree:
|
||||||
|
return p1
|
||||||
|
f = p1.coefficients
|
||||||
|
g = p2.coefficients
|
||||||
|
g_lead_coef = g[-1]
|
||||||
|
g_deg = p2.degree
|
||||||
|
while len(f) >= len(g):
|
||||||
|
f_lead_coef = f[-1]
|
||||||
|
tmp_coef = f_lead_coef * inverse(g_lead_coef)
|
||||||
|
tmp_exp = len(f) - 1 - g_deg
|
||||||
|
tmp = []
|
||||||
|
for _ in range(tmp_exp):
|
||||||
|
tmp.append(0)
|
||||||
|
tmp.append(tmp_coef)
|
||||||
|
tmp_poly = Polynomial(tmp)
|
||||||
|
sub = Polynomial.multiply(p2, tmp_poly)
|
||||||
|
f = [x - y for x, y in zip(f, sub.coefficients)]
|
||||||
|
f = [x % int(Polynomial.n) for x in f]
|
||||||
|
while f and f[-1] == 0:
|
||||||
|
f.pop()
|
||||||
|
return Polynomial(f)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def gcd(p1, p2):
|
||||||
|
if len(p2.coefficients) == 0:
|
||||||
|
return p1
|
||||||
|
return Polynomial.gcd(p2, Polynomial.divide(p1, p2))
|
88
Zadanie-4/quotient_ring.py
Normal file
88
Zadanie-4/quotient_ring.py
Normal file
@ -0,0 +1,88 @@
|
|||||||
|
from poly import Polynomial as P
|
||||||
|
import sys
|
||||||
|
import ast
|
||||||
|
|
||||||
|
class QuotientRing:
|
||||||
|
|
||||||
|
def __init__(self, coeffs):
|
||||||
|
self.fx = P(coeffs)
|
||||||
|
self.remainder_set = self.create_remainder_set()
|
||||||
|
self.invertible_elements = self.get_invertible_elements()
|
||||||
|
self.zero_divisors = self.get_zero_divisors()
|
||||||
|
self.nilpotent_elements = self.get_nilpotent_elements()
|
||||||
|
self.idempotent_elements = self.get_idempotent_elements()
|
||||||
|
|
||||||
|
def create_remainder_set(self):
|
||||||
|
remainders = []
|
||||||
|
rem = [0]
|
||||||
|
i = 0
|
||||||
|
while len(rem) < len(self.fx.coefficients):
|
||||||
|
remainders.append(P(rem))
|
||||||
|
i = (i + 1) % P.n
|
||||||
|
rem[0] = i
|
||||||
|
if i == 0:
|
||||||
|
if len(rem) == 1:
|
||||||
|
rem.append(1)
|
||||||
|
else:
|
||||||
|
rem[1] += 1
|
||||||
|
for j in range(1, len(rem)):
|
||||||
|
if rem[j] == 0 or rem[j] % P.n != 0:
|
||||||
|
break
|
||||||
|
tmp = rem[j] % P.n
|
||||||
|
rem[j] = 0
|
||||||
|
if tmp == 0:
|
||||||
|
if (j + 1) < len(rem):
|
||||||
|
rem[j+1] += 1
|
||||||
|
else:
|
||||||
|
rem.append(1)
|
||||||
|
return remainders
|
||||||
|
|
||||||
|
def get_invertible_elements(self):
|
||||||
|
invertible_elements = []
|
||||||
|
for i in self.remainder_set:
|
||||||
|
if i.coefficients != [0] and len(P.gcd(self.fx, i).coefficients) == 1:
|
||||||
|
invertible_elements.append(i)
|
||||||
|
return invertible_elements
|
||||||
|
|
||||||
|
def get_zero_divisors(self):
|
||||||
|
zero_diviors = []
|
||||||
|
for i in self.remainder_set:
|
||||||
|
if i not in self.invertible_elements:
|
||||||
|
zero_diviors.append(i)
|
||||||
|
return zero_diviors
|
||||||
|
|
||||||
|
def get_nilpotent_elements(self):
|
||||||
|
nilpotent_elements = []
|
||||||
|
for i in self.zero_divisors:
|
||||||
|
for j in range(1, len(self.invertible_elements) + 1):
|
||||||
|
if i.coefficients == [0] or len(P.divide(i**j, self.fx).coefficients) == 0:
|
||||||
|
nilpotent_elements.append(i)
|
||||||
|
break
|
||||||
|
return nilpotent_elements
|
||||||
|
|
||||||
|
def get_idempotent_elements(self):
|
||||||
|
idempotent_elements = []
|
||||||
|
for i in self.remainder_set:
|
||||||
|
if P.divide(i**2, self.fx).coefficients == P.divide(i, self.fx).coefficients:
|
||||||
|
idempotent_elements.append(i)
|
||||||
|
return idempotent_elements
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
P.n = int(sys.argv[1])
|
||||||
|
coeffs = ast.literal_eval(sys.argv[2])
|
||||||
|
Q = QuotientRing(coeffs)
|
||||||
|
|
||||||
|
ans = [
|
||||||
|
[x.coefficients for x in Q.invertible_elements],
|
||||||
|
[x.coefficients for x in Q.zero_divisors],
|
||||||
|
[x.coefficients for x in Q.nilpotent_elements],
|
||||||
|
[x.coefficients for x in Q.idempotent_elements]
|
||||||
|
]
|
||||||
|
|
||||||
|
for i in range(len(ans)):
|
||||||
|
print(ans[i])
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
Loading…
Reference in New Issue
Block a user