Rozwiązanie zadania "Ilorazy pierścienia wielomianów" #35

Closed
s426211 wants to merge 15 commits from (deleted):zad4 into master
Showing only changes of commit 437428d6aa - Show all commits

145
main.py
View File

@ -3,18 +3,39 @@ import itertools
class Poly:
def __init__(self, elements):
def __init__(self, int_mod, elements):
self.elements = {}
self.int_mod = int_mod
i = len(elements) - 1
for e in reversed(elements):
self.elements[f"x{i}"] = e
self.elements[f"x{i}"] = e % self.int_mod
i -= 1
def __str__(self):
return str(self.elements)
str_form = ""
deg = len(self.elements) - 1
for e in self.elements:
if self.elements[e] >= 0:
if e != f"x{deg}":
str_form += "+ "
else:
str_form += "- "
str_form += str(abs(self.elements[e]))
if e != "x0":
str_form += e[0] + "^" + e[1:] + " "
return str_form
def __mul__(self, other):
if self.int_mod != other.int_mod:
raise Exception("Different modulo")
elements = {}
for e in self.elements:
@ -23,22 +44,81 @@ class Poly:
degree = f"x{int(e[1:])+int(f[1:])}"
if elements.get(f"{degree}") is None:
elements[degree] = coefficient
elements[degree] = coefficient % self.int_mod
else:
elements[degree] += coefficient
elements[degree] += coefficient % self.int_mod
return Poly(list(reversed(list(elements.values()))))
return Poly(self.int_mod, list(reversed(list(elements.values()))))
def __mod__(self, other):
elements = {}
def __pow__(self, power, modulo=None):
poly = Poly(self.int_mod, list(reversed(list(self.elements.values()))))
for i in range(power - 1):
poly *= poly
return poly
def __add__(self, other):
if self.int_mod != other.int_mod:
raise Exception("Different modulo")
elements = self.elements.copy()
for f in other.elements:
if f in elements:
elements[f] += other.elements[f]
else:
elements[f] = other.elements[f]
return Poly(self.int_mod,
list(reversed(list(sorted(elements.values())))))
def __truediv__(self, other):
if self.int_mod != other.int_mod:
raise Exception("Different modulo")
if other.is_empty():
raise ZeroDivisionError("Polynomial is empty")
fdeg = len(self.elements) - 1
sdeg = len(other.elements) - 1
while not other.is_empty():
coefficient = self.elements[f"x{fdeg}"] / other.elements[f"x{sdeg}"]
coefficient %= self.int_mod
degree = fdeg - sdeg
# print(self.elements["x2"])
# break
def is_empty(self):
for e in self.elements:
if self.elements[e] != 0:
return False
return True
class PolyIntField:
def __init__(self, int_modulo, poly_modulo):
self.int_modulo = int_modulo
self.poly_modulo = Poly(poly_modulo)
self.elements = list(itertools.product([x for x in range(0, int_modulo)]
, repeat=len(poly_modulo) - 1))
def __init__(self, int_mod, poly_mod):
self.int_modulo = int_mod
self.poly_modulo = Poly(int_mod, poly_mod)
product = list(itertools.product([x for x in range(0, int_mod)],
repeat=len(poly_mod) - 1))
self.elements = []
for p in product:
p = list(p)
p = [x % int_mod for x in p]
self.elements.append(Poly(int_mod, p))
def get_nilpotents(self):
nilpotents = []
@ -48,12 +128,39 @@ class PolyIntField:
if __name__ == "__main__":
# a = PolyIntField(3, [1, 1, 2, 2])
# print(a.elements)
# print(len(a.elements))
b = Poly([4, 8, 1, 3])
c = Poly([1, 4])
p = Poly(5, [-4, 0, -2, 1])
# print(p)
# c = p * p
# print(c.elements)
# print(c)
# print(p ** 2)
d = Poly(5, [-3, 1])
# print(p)
# print(d)
# print(p)
# print(p + d)
print(b.elements)
print(b * c * c)
# c = Poly()
g = Poly(5, [1, 2, 1])
# print()
# print(g ** 2)
print(d)
print(g)
# c = d * g
print(g * d)
print(d * g)
print(g + d)
print(d + g)
print(d)
print(g)
# print(g - d)
# print(p / d)
# print(p.elements[0])
# a = PolyIntField(3, [1, 1, 2, 2])
# for e in a.elements:
# print(e.elements)
# print()
# print(a.elements[4])
# print(a.elements[8])
# print(a.elements[4] * a.elements[8])
# a.elements[3] / a.elements[1]