zad 02,03 #37
87
01-rozwiazanie.js
Normal file
87
01-rozwiazanie.js
Normal file
@ -0,0 +1,87 @@
|
|||||||
|
const rl = require('readline').createInterface({
|
||||||
|
input: process.stdin,
|
||||||
|
output: process.stdout
|
||||||
|
});
|
||||||
|
|
||||||
|
//zapytanie o wartosc n
|
||||||
|
rl.question('n? ', n => {
|
||||||
|
n = parseInt(n);
|
||||||
|
//sprawdzenie czy n na pewno jest liczba
|
||||||
|
if (isNaN(n)) throw Error('Must be Number');
|
||||||
|
// deklarowanie slownikow dla poszczegolnych elementow(aby się nie powtorzyly)
|
||||||
|
let elOdw = new Dictionary();
|
||||||
|
let dzielZero = new Dictionary();
|
||||||
|
let elNil = new Dictionary();
|
||||||
|
let elIden = new Dictionary();
|
||||||
|
//#region dodanie trywalnych
|
||||||
|
dzielZero.add(0, 0);
|
||||||
|
elNil.add(0, 0);
|
||||||
|
elIden.add(0, 0);
|
||||||
|
//#endregion
|
||||||
|
for (let y = 0; y < n; y++) {
|
||||||
|
//#region Obliczanie elementow Idenpotetnych
|
||||||
|
if (Math.pow(y, 2) % n == y) {
|
||||||
|
elIden.add(y, y);
|
||||||
|
}
|
||||||
|
//#endregion
|
||||||
|
for (let x = 0; x < n; x++) {
|
||||||
|
//#region obliczanie elementow Nilpotetnych
|
||||||
|
if (Math.pow(y, x) % n == 0) {
|
||||||
|
elNil.add(y, y);
|
||||||
|
}
|
||||||
|
//#endregion
|
||||||
|
//#region Obliczanie elementow odwracalnych'
|
||||||
|
if (x >= y && (x * y) % n == 1) {
|
||||||
|
elOdw.add(x, x);
|
||||||
|
elOdw.add(y, y);
|
||||||
|
}
|
||||||
|
//#endregion
|
||||||
|
//#region obliczanie dzielnikow zera
|
||||||
|
if (x >= y && x != 0 && y != 0 && (x * y) % n == 0) {
|
||||||
|
dzielZero.add(x, x);
|
||||||
|
dzielZero.add(y, y);
|
||||||
|
}
|
||||||
|
//#endregion
|
||||||
|
}
|
||||||
|
}
|
||||||
|
//wypisanie obliczonych wartosci wartosci
|
||||||
|
console.log([
|
||||||
|
elOdw.getValues(),
|
||||||
|
dzielZero.getValues(),
|
||||||
|
elNil.getValues(),
|
||||||
|
elIden.getValues()
|
||||||
|
]);
|
||||||
|
//zamkniecie połaczenia z input/output
|
||||||
|
rl.close();
|
||||||
|
});
|
||||||
|
|
||||||
|
function NWD(a, b) {
|
||||||
|
return b ? NWD(b, a % b) : a;
|
||||||
|
}
|
||||||
|
// klasa słownika
|
||||||
|
class Dictionary {
|
||||||
|
constructor() {
|
||||||
|
this.elements = {};
|
||||||
|
}
|
||||||
|
add(key, value) {
|
||||||
|
this.elements[key] = value;
|
||||||
|
}
|
||||||
|
remove(key, value) {
|
||||||
|
delete this.elements[key];
|
||||||
|
}
|
||||||
|
|
||||||
|
getKeys() {
|
||||||
|
let keys = [];
|
||||||
|
for (let key in this.elements) {
|
||||||
|
keys.push(key);
|
||||||
|
}
|
||||||
|
return keys;
|
||||||
|
}
|
||||||
|
getValues() {
|
||||||
|
let values = [];
|
||||||
|
for (let key in this.elements) {
|
||||||
|
values.push(this.elements[key]);
|
||||||
|
}
|
||||||
|
return values;
|
||||||
|
}
|
||||||
|
}
|
22
02-rozwiazanie.js
Normal file
22
02-rozwiazanie.js
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
let Polynomial = require('./polynomial.js');
|
||||||
|
let mul, div, gcd;
|
||||||
|
|
||||||
|
|
||||||
|
let n = parseInt(process.argv[2]);
|
||||||
|
let p1 = JSON.parse(process.argv[3].replace(/'/g, '"'));
|
||||||
|
let p2 = JSON.parse(process.argv[4].replace(/'/g, '"'));
|
||||||
|
|
||||||
|
let f = new Polynomial.Class(n, p1);
|
||||||
|
let g = new Polynomial.Class(n, p2);
|
||||||
|
mul = Polynomial.multiply(f, g).coefficients;
|
||||||
|
try {
|
||||||
|
div = Polynomial.divide(f, g).coefficients
|
||||||
|
} catch (e) {
|
||||||
|
console.log(e)
|
||||||
|
}
|
||||||
|
try {
|
||||||
|
gcd = Polynomial.gcd(f, g).coefficients;
|
||||||
|
} catch (e) {
|
||||||
|
console.log(e);
|
||||||
|
}
|
||||||
|
console.log([mul, div, gcd])
|
20
03-rozwiazanie.js
Normal file
20
03-rozwiazanie.js
Normal file
@ -0,0 +1,20 @@
|
|||||||
|
const crc = require("./crc.js");
|
||||||
|
const message = process.argv[3];
|
||||||
|
const flag = process.argv[2];
|
||||||
|
|
||||||
|
switch (flag) {
|
||||||
|
case '-e':
|
||||||
|
console.log(crc.encode(message).encoded);
|
||||||
|
break;
|
||||||
|
case '-d':
|
||||||
|
let fcs = JSON.parse(process.argv[4].replace(/'/g, '"'));
|
||||||
|
console.log(crc.decode(message, fcs));
|
||||||
|
break;
|
||||||
|
case '-t':
|
||||||
|
let res = crc.encode(message);
|
||||||
|
console.log(res.encoded);
|
||||||
|
console.log(crc.decode(message, res.FCS))
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
throw "incorect flag"
|
||||||
|
}
|
117
crc.js
Normal file
117
crc.js
Normal file
@ -0,0 +1,117 @@
|
|||||||
|
const Polynomial = require('./polynomial.js');
|
||||||
|
|
||||||
|
const L = new Polynomial.Class(2, new Array(16).fill(1));
|
||||||
|
const X16 = new Polynomial.Class(2, [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]); //jako ze można to od razu wymnożyć
|
||||||
|
const G = new Polynomial.Class(2, [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1]); //jako ze można to od razu wymnożyć
|
||||||
|
|
||||||
|
const to_bin = a => {
|
||||||
|
var result = "";
|
||||||
|
for (var i = 0; i < a.length; i++) {
|
||||||
|
var bin = a[i].charCodeAt().toString(2);
|
||||||
|
result += Array(8 - bin.length + 1).join("0") + bin;
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
const to_ascii = a => {
|
||||||
|
a = a.join('');
|
||||||
|
a = parseInt(a, 2);
|
||||||
|
//nie znalazłem innego sposobu w js na osiągniecie tego efektu..
|
||||||
|
// if (a < 126) //ponieważ wieksze liczby nie należą do typowego Ascii//porzucone ze wzgledu na decode
|
||||||
|
return String.fromCharCode(a);
|
||||||
|
// else {
|
||||||
|
// return "0x" + a.toString(16);
|
||||||
|
// // return "\\x" + a.toString(16); //escape \ nie wiem czemu dobrze nie działą i i tak wypisuje \\
|
||||||
|
// }
|
||||||
|
|
||||||
|
|
||||||
|
}
|
||||||
|
const mod8format = array => {
|
||||||
|
while (array.length % 8 != 0) {
|
||||||
|
array.push(0);
|
||||||
|
}
|
||||||
|
return array;
|
||||||
|
}
|
||||||
|
|
||||||
|
const fcs = m => {
|
||||||
|
let bits = m.map(to_bin); //message in binary
|
||||||
|
bits = bits.join('').split('').reverse(); //reverse binary decoded message
|
||||||
|
let M = new Polynomial.Class(2, bits);
|
||||||
|
let fcs = Polynomial.multiply(X16, M);
|
||||||
|
|
||||||
|
fcs = Polynomial.add(fcs,
|
||||||
|
Polynomial.multiply(
|
||||||
|
Polynomial.Mono(m.length * 8, 1, 2),
|
||||||
|
L
|
||||||
|
)
|
||||||
|
)
|
||||||
|
fcs = Polynomial.divide(fcs, G);
|
||||||
|
for (let i = 0; i < 16 - fcs.coefficients.length; i++) fcs.coefficients.push(0);
|
||||||
|
fcs.coefficients.reverse();
|
||||||
|
return fcs.coefficients;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
const check = m => {
|
||||||
|
|
||||||
|
let bits = m.map(to_bin); //message in binary
|
||||||
|
bits = bits.join('').split('').reverse(); //reverse binary decoded message
|
||||||
|
|
||||||
|
let fcs = Polynomial.Mono(bits.length, 1, 2);
|
||||||
|
|
||||||
|
|
||||||
|
let C = new Polynomial.Class(2, bits);
|
||||||
|
C = Polynomial.multiply(X16, C);
|
||||||
|
C.coefficients = mod8format(C.coefficients);
|
||||||
|
let S = Polynomial.add(
|
||||||
|
C,
|
||||||
|
Polynomial.multiply(
|
||||||
|
fcs,
|
||||||
|
L
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
S = Polynomial.divide(S, G)
|
||||||
|
if (S.coefficients.length === 0) {
|
||||||
|
return true;
|
||||||
|
} else
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
function encode(m) {
|
||||||
|
m = m.split('');
|
||||||
|
let res = fcs(m);
|
||||||
|
|
||||||
|
let f1 = [];
|
||||||
|
let f2 = [];
|
||||||
|
for (let i = 0; i < res.length; i++) {
|
||||||
|
if (i < 8) {
|
||||||
|
f1.push(res[i]);
|
||||||
|
} else {
|
||||||
|
f2.push(res[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
f1 = to_ascii(f1);
|
||||||
|
f2 = to_ascii(f2);
|
||||||
|
m.push(f1);
|
||||||
|
m.push(f2);
|
||||||
|
return {
|
||||||
|
encoded: m,
|
||||||
|
FCS: [f1, f2]
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
exports.encode = encode;
|
||||||
|
|
||||||
|
function decode(m, fcs) {
|
||||||
|
m = m.split('');
|
||||||
|
to_check = fcs;
|
||||||
|
for (let char in fcs) {
|
||||||
|
m.push(fcs[char]);
|
||||||
|
}
|
||||||
|
return check(m)
|
||||||
|
|
||||||
|
}
|
||||||
|
exports.decode = decode;
|
180
polynomial.js
Normal file
180
polynomial.js
Normal file
@ -0,0 +1,180 @@
|
|||||||
|
class Polynomial {
|
||||||
|
constructor(mod, coefArray) {
|
||||||
|
this.mod = mod;
|
||||||
|
this.degree = (coefArray.length - 1);
|
||||||
|
|
||||||
|
this.coefficients = Array.from(coefArray); //zeby nie przekazywać referencji
|
||||||
|
this.normalize();
|
||||||
|
}
|
||||||
|
normalize() {
|
||||||
|
while (this.coefficients && this.coefficients[this.coefficients.length - 1] == 0) {
|
||||||
|
this.coefficients.pop();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
exports.Class = Polynomial;
|
||||||
|
|
||||||
|
function get_mod(p1, p2) {
|
||||||
|
let n;
|
||||||
|
if (p1.mod !== p2.mod) {
|
||||||
|
throw "different modulo"
|
||||||
|
} else {
|
||||||
|
return p1.mod;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
function prepare(p1, p2) {
|
||||||
|
let n = get_mod(p1, p2);
|
||||||
|
let len_p1 = p1.coefficients.length;
|
||||||
|
let len_p2 = p2.coefficients.length;
|
||||||
|
result = new Array(Math.max(len_p1, len_p2)).fill(0);
|
||||||
|
if (len_p1 > len_p2) {
|
||||||
|
for (let x = 0; x < len_p1 - len_p2; x++) p2.coefficients.push(0);
|
||||||
|
} else {
|
||||||
|
for (let x = 0; x < len_p2 - len_p1; x++) p1.coefficients.push(0);
|
||||||
|
}
|
||||||
|
return {
|
||||||
|
result,
|
||||||
|
n
|
||||||
|
};
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
function add(p1, p2) {
|
||||||
|
|
||||||
|
let {
|
||||||
|
result,
|
||||||
|
n
|
||||||
|
} = prepare(p1, p2);
|
||||||
|
for (let i = 0; i < result.length; i++) {
|
||||||
|
result[i] = (p1.coefficients[i] + p2.coefficients[i]) % n;
|
||||||
|
}
|
||||||
|
return new Polynomial(n, result);
|
||||||
|
}
|
||||||
|
exports.add = add;
|
||||||
|
|
||||||
|
function sub(p1, p2) {
|
||||||
|
let {
|
||||||
|
result,
|
||||||
|
n
|
||||||
|
} = prepare(p1, p2);
|
||||||
|
for (let i = 0; i < result.length; i++) {
|
||||||
|
result[i] = (p1.coefficients[i] - p2.coefficients[i]) % n;
|
||||||
|
}
|
||||||
|
return new Polynomial(n, result);
|
||||||
|
}
|
||||||
|
exports.sub = sub;
|
||||||
|
|
||||||
|
function sub(p1, p2) {
|
||||||
|
let n = get_mod(p1, p2);
|
||||||
|
let len_p1 = p1.coefficients.length;
|
||||||
|
let len_p2 = p2.coefficients.length;
|
||||||
|
result = new Array(Math.max(len_p1, len_p2)).fill(0);
|
||||||
|
if (len_p1 > len_p2) {
|
||||||
|
for (let x = 0; x < len_p1 - len_p2; x++) p2.coefficients.push(0);
|
||||||
|
} else {
|
||||||
|
for (let x = 0; x < len_p2 - len_p1; x++) p1.coefficients.push(0);
|
||||||
|
}
|
||||||
|
for (let i = 0; i < result.length; i++) {
|
||||||
|
result[i] = (p1.coefficients[i] - p2.coefficients[i]) % n;
|
||||||
|
}
|
||||||
|
return new Polynomial(n, result);
|
||||||
|
}
|
||||||
|
exports.add = add;
|
||||||
|
|
||||||
|
function multiply(p1, p2) {
|
||||||
|
let n = get_mod(p1, p2);
|
||||||
|
let f = p1.coefficients;
|
||||||
|
let g = p2.coefficients;
|
||||||
|
result = new Array(f.length + g.length - 1).fill(0);
|
||||||
|
|
||||||
|
let tmp = [];
|
||||||
|
for (let i = 0; i < f.length; i++) {
|
||||||
|
for (let j = 0; j < g.length; j++) {
|
||||||
|
result[i + j] += f[i] * g[j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return new Polynomial(n, result.map(x => (x % n) + (x < 0 ? n : 0)));
|
||||||
|
}
|
||||||
|
exports.multiply = multiply;
|
||||||
|
|
||||||
|
function power(p1, pow) {
|
||||||
|
let result = p1;
|
||||||
|
for (let i = 1; i < pow; i++) {
|
||||||
|
result = multiply(result, p1);
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
exports.power = power;
|
||||||
|
|
||||||
|
function divide(p1, p2) {
|
||||||
|
let n;
|
||||||
|
if (p1.mod !== p2.mod) {
|
||||||
|
throw "different modulo"
|
||||||
|
} else {
|
||||||
|
n = p1.mod;
|
||||||
|
}
|
||||||
|
let inverse = (x) => {
|
||||||
|
for (let i = 1; i < 2; i++) {
|
||||||
|
let r = (i * x) % 2;
|
||||||
|
if (r == 1)
|
||||||
|
return i
|
||||||
|
else
|
||||||
|
throw "divisionError"
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (p1.degree < p2.degree)
|
||||||
|
return p1;
|
||||||
|
let f = p1.coefficients;
|
||||||
|
let g = p2.coefficients;
|
||||||
|
let g_lead_coef = g[g.length - 1];
|
||||||
|
let g_deg = p2.degree;
|
||||||
|
|
||||||
|
while (f.length >= g.length) {
|
||||||
|
|
||||||
|
let f_lead_coef = f[f.length - 1];
|
||||||
|
let tmp_coef = f_lead_coef * inverse(g_lead_coef);
|
||||||
|
let tmp_exp = f.length - 1 - g_deg;
|
||||||
|
let tmp = [];
|
||||||
|
for (let i = 0; i < tmp_exp; i++) {
|
||||||
|
tmp.push(0);
|
||||||
|
}
|
||||||
|
tmp.push(tmp_coef);
|
||||||
|
tmp_poly = new Polynomial(n, tmp);
|
||||||
|
let sub = multiply(p2, tmp_poly, n);
|
||||||
|
let tmp_f = [];
|
||||||
|
for (let i = 0; i < f.length; i++) {
|
||||||
|
for (let j = 0; j < sub.coefficients.length; j++) {
|
||||||
|
if (i == j)
|
||||||
|
tmp_f.push(f[i] - sub.coefficients[j]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
f = tmp_f.map(x => (x % n) + (x < 0 ? n : 0));
|
||||||
|
while (f && f[f.length - 1] === 0)
|
||||||
|
f.pop();
|
||||||
|
|
||||||
|
}
|
||||||
|
return new Polynomial(n, f);
|
||||||
|
}
|
||||||
|
|
||||||
|
exports.divide = divide;
|
||||||
|
|
||||||
|
function gcd(p1, p2) {
|
||||||
|
if (p2.coefficients.length === 0) {
|
||||||
|
return p1;
|
||||||
|
}
|
||||||
|
return gcd(p2, divide(p1, p2));
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
exports.gcd = gcd;
|
||||||
|
|
||||||
|
function Mono(n, c, mod) {
|
||||||
|
let coef = new Array(n).fill(0);
|
||||||
|
coef.push(c);
|
||||||
|
return new Polynomial(mod, coef);
|
||||||
|
}
|
||||||
|
exports.Mono = Mono;
|
Loading…
Reference in New Issue
Block a user