DALGLI0/main.py
2018-06-28 13:16:51 +02:00

380 lines
9.5 KiB
Python

import itertools
class Poly:
def __init__(self, int_mod, elements):
self.elements = {}
self.int_mod = int_mod
elements = list(reversed(elements))
z = 0
for i in elements:
if i != 0:
break
z += 1
elements = elements[z:]
i = len(elements) - 1
for e in elements:
self.elements[f"x{i}"] = e % self.int_mod
i -= 1
def __str__(self):
str_form = ""
deg = len(self.elements) - 1
for e in self.elements:
if self.elements[e] >= 0:
if e != f"x{deg}":
str_form += "+ "
else:
str_form += "- "
str_form += str(abs(self.elements[e]))
if e != "x0":
str_form += e[0] + "^" + e[1:] + " "
return str_form
def __mul__(self, other):
assert self.int_mod == other.int_mod
elements = {}
for e in self.elements:
for f in other.elements:
coefficient = self.elements[e] * other.elements[f]
degree = f"x{int(e[1:])+int(f[1:])}"
if elements.get(f"{degree}") is None:
elements[degree] = coefficient % self.int_mod
else:
elements[degree] += coefficient % self.int_mod
els = {}
for i in reversed(range(len(elements))):
els[f"x{i}"] = elements[f"x{i}"]
return Poly(self.int_mod, list(reversed(list(els.values()))))
def __pow__(self, power, modulo=None):
poly = Poly(self.int_mod, list(reversed(list(self.elements.values()))))
for i in range(power - 1):
poly *= poly
return poly
def __add__(self, other):
assert self.int_mod == other.int_mod
elements = self.elements.copy()
for f in other.elements:
if f in elements:
elements[f] += other.elements[f]
else:
elements[f] = other.elements[f]
els = {}
for i in reversed(range(len(elements))):
els[f"x{i}"] = elements[f"x{i}"]
return Poly(self.int_mod, list(reversed(list(els.values()))))
def __sub__(self, other):
assert self.int_mod == other.int_mod
elements = self.elements.copy()
for e in other.elements:
if e in elements:
elements[e] -= other.elements[e]
else:
elements[e] = -other.elements[e]
els = {}
for i in reversed(range(len(elements))):
els[f"x{i}"] = elements[f"x{i}"]
return Poly(self.int_mod, list(reversed(list(els.values()))))
def __truediv__(self, other):
assert self.int_mod == other.int_mod
if other.is_empty():
raise ZeroDivisionError("Polynomial is empty")
poly = Poly(self.int_mod, list(reversed(list(self.elements.values()))))
fdeg = len(poly.elements) - 1
sdeg = len(other.elements) - 1
els = {}
while fdeg >= sdeg:
coefficient = other.elements[f"x{sdeg}"]
for i in range(1, poly.int_mod):
if coefficient * i % poly.int_mod == poly.elements[f"x{fdeg}"]:
coefficient = i
break
degree = fdeg - sdeg
divpoly = [0 for x in range(degree + 1)]
divpoly[degree] = coefficient
divpoly = Poly(poly.int_mod, divpoly)
els[f"x{degree}"] = coefficient
mulpoly = divpoly * other
poly -= mulpoly
for i in poly.elements.keys():
if poly.elements[f"{i}"] != 0:
fdeg = int(i[1:])
break
return Poly(poly.int_mod, list(reversed(list(els.values()))))
def __mod__(self, other):
assert self.int_mod == other.int_mod
if other.is_empty():
raise ZeroDivisionError("Polynomial is empty")
poly = Poly(self.int_mod, list(reversed(list(self.elements.values()))))
fdeg = len(poly.elements) - 1
sdeg = len(other.elements) - 1
while fdeg >= sdeg:
coefficient = other.elements[f"x{sdeg}"]
for i in range(1, poly.int_mod):
if coefficient * i % poly.int_mod == poly.elements[f"x{fdeg}"]:
coefficient = i
break
degree = fdeg - sdeg
divpoly = [0 for x in range(degree + 1)]
divpoly[degree] = coefficient
divpoly = Poly(poly.int_mod, divpoly)
mulpoly = divpoly * other
poly -= mulpoly
for i in poly.elements.keys():
if poly.elements[f"{i}"] != 0:
fdeg = int(i[1:])
break
return poly
@staticmethod
def gcd(self, other):
dividened = Poly(self.int_mod,
list(reversed(list(self.elements.values()))))
divisor = Poly(self.int_mod,
list(reversed(list(other.elements.values()))))
div_result = dividened / divisor
while True:
xs_zero = True
for e in div_result.elements:
if e != "x0":
if div_result.elements[e] != 0:
xs_zero = False
break
# if xs_zero:
# if div_result.elements["x0"] == 1:
# break
if dividened.is_empty():
break
dividened = Poly(dividened.int_mod,
list(reversed(list(divisor.elements.values()))))
divisor = Poly(divisor.int_mod,
list(reversed(list(div_result.elements.values()))))
div_result = dividened / divisor
return div_result
def is_empty(self):
for e in self.elements:
if self.elements[e] != 0:
return False
return True
class PolyIntField:
def __init__(self, int_mod, poly_mod):
self.int_modulo = int_mod
self.poly_modulo = Poly(int_mod, poly_mod)
product = list(itertools.product([x for x in range(0, int_mod)],
repeat=len(poly_mod) - 1))
self.elements = []
for p in product:
p = list(p)
p = [x % int_mod for x in p]
self.elements.append(Poly(int_mod, p))
def invertibles(self):
invertibles = []
for e in self.elements:
if Poly.gcd(e, self.poly_modulo) == 1:
invertibles.append(e)
return invertibles
def nilpotents(self):
nilpotents = []
for e in self.elements:
if not e.is_empty():
for f in self.elements:
if not f.is_empty():
if (e ** f) % self.poly_modulo == e:
nilpotents.append(e)
return nilpotents
def idempotents(self):
idempotents = []
for e in self.elements:
if Poly.gcd((e ** 2), self.poly_modulo) == e:
idempotents.append(e)
return idempotents
def zero_divisors(self):
zero_divisors = []
for e in self.elements:
if not e.is_empty():
for f in self.elements:
if not f.is_empty():
if Poly.gcd((e * f), self.poly_modulo).is_empty():
zero_divisors.append(e)
return zero_divisors
if __name__ == "__main__":
# poly_field = PolyIntField(3, [1, 1, 2, 2])
# print(poly_field.invertibles())
# for p in poly_field.elements:
# print(p)
# print(p.elements)
# print(len(poly_field.elements))
# a = Poly(3, [0, 0, 0])
# b = Poly(3, [1, 2])
# print((a * b).is_empty())
# x = Poly(5, [1, 0, 4, 0, 2, 1])
# y = Poly(5, [4, 0, 0, 0, 1])
# print(x % y)
# o = Poly(5, [1, 0, 1, 2, 2, 1])
# print(o)
#
# p = Poly(5, [4, 0, 0, 0, 1])
# print(p)
# print(o / p)
# n = Poly(5, [1, 0, 1])
# m = Poly(5, [2, 4])
# print(n / m)
# a = Poly(5, [1, 0, 4, 0, 2, 1, 0, 0])
# # print(a)
# b = Poly(5, [4, 0, 0, 0, 1])
# # print(b)
# # print(a + b)
# print(a % b)
# d = Poly(5, [3, 1, 4])
# # print(d)
# e = Poly(5, [4, 0, 0, 0, 1])
# # print(e)
# print(e / d)
# c = Poly(5, [4, 0, 0, 0, 1])
# d = Poly(5, [3, 1, 4, 0, 0, 0])
# print(c)
# print(d)
# print(c % d)
e = Poly(10, [-4, 0, -2, 1])
f = Poly(10, [-3, 1])
print(e / f)
print(e % f)
print(f / e)
print(f % e)
# print((a % b).elements)
# d = Poly(10, [2, 0, 6, 0, 1])
# e = Poly(10, [5, 0, 1])
# print(d / e)
# print(a - Poly(10, [0, 0, -3, 1]))
# p = Poly(5, [-4, 0, -2, 1])
# print(p)
# c = p * p
# print(c.elements)
# print(c)
# print(p ** 2)
# print(p)
# print(d)
# print(p)
# print(p + d)
# d = Poly(5, [-3, 1])
# g = Poly(5, [1, 2, 1])
# print(d)
# print(g)
# print()
#
# # print(g)
# print(g - d)
# print(d - g)
#
# print()
# print(d + g)
# print(g + d)
#
# print()
# print(d * g)
# print(g * d)
# print(d)
# print(g)
# print(g - d)
# print(p / d)
# print(p.elements[0])
# a = PolyIntField(3, [1, 1, 2, 2])
# for e in a.elements:
# print(e.elements)
# print()
# print(a.elements[4])
# print(a.elements[8])
# print(a.elements[4] * a.elements[8])
# a.elements[3] / a.elements[1]