DALGLI0/polynomial.js
Kacper Kruczek 60b29ca3d8 03 mono
zeby ograniczyć ilość obliczeń
2018-07-01 15:27:15 +02:00

180 lines
4.3 KiB
JavaScript

class Polynomial {
constructor(mod, coefArray) {
this.mod = mod;
this.degree = (coefArray.length - 1);
this.coefficients = Array.from(coefArray); //zeby nie przekazywać referencji
this.normalize();
}
normalize() {
while (this.coefficients && this.coefficients[this.coefficients.length - 1] == 0) {
this.coefficients.pop();
}
}
}
exports.Class = Polynomial;
function get_mod(p1, p2) {
let n;
if (p1.mod !== p2.mod) {
throw "different modulo"
} else {
return p1.mod;
}
}
function prepare(p1, p2) {
let n = get_mod(p1, p2);
let len_p1 = p1.coefficients.length;
let len_p2 = p2.coefficients.length;
result = new Array(Math.max(len_p1, len_p2)).fill(0);
if (len_p1 > len_p2) {
for (let x = 0; x < len_p1 - len_p2; x++) p2.coefficients.push(0);
} else {
for (let x = 0; x < len_p2 - len_p1; x++) p1.coefficients.push(0);
}
return {
result,
n
};
}
function add(p1, p2) {
let {
result,
n
} = prepare(p1, p2);
for (let i = 0; i < result.length; i++) {
result[i] = (p1.coefficients[i] + p2.coefficients[i]) % n;
}
return new Polynomial(n, result);
}
exports.add = add;
function sub(p1, p2) {
let {
result,
n
} = prepare(p1, p2);
for (let i = 0; i < result.length; i++) {
result[i] = (p1.coefficients[i] - p2.coefficients[i]) % n;
}
return new Polynomial(n, result);
}
exports.sub = sub;
function sub(p1, p2) {
let n = get_mod(p1, p2);
let len_p1 = p1.coefficients.length;
let len_p2 = p2.coefficients.length;
result = new Array(Math.max(len_p1, len_p2)).fill(0);
if (len_p1 > len_p2) {
for (let x = 0; x < len_p1 - len_p2; x++) p2.coefficients.push(0);
} else {
for (let x = 0; x < len_p2 - len_p1; x++) p1.coefficients.push(0);
}
for (let i = 0; i < result.length; i++) {
result[i] = (p1.coefficients[i] - p2.coefficients[i]) % n;
}
return new Polynomial(n, result);
}
exports.add = add;
function multiply(p1, p2) {
let n = get_mod(p1, p2);
let f = p1.coefficients;
let g = p2.coefficients;
result = new Array(f.length + g.length - 1).fill(0);
let tmp = [];
for (let i = 0; i < f.length; i++) {
for (let j = 0; j < g.length; j++) {
result[i + j] += f[i] * g[j];
}
}
return new Polynomial(n, result.map(x => (x % n) + (x < 0 ? n : 0)));
}
exports.multiply = multiply;
function power(p1, pow) {
let result = p1;
for (let i = 1; i < pow; i++) {
result = multiply(result, p1);
}
return result;
}
exports.power = power;
function divide(p1, p2) {
let n;
if (p1.mod !== p2.mod) {
throw "different modulo"
} else {
n = p1.mod;
}
let inverse = (x) => {
for (let i = 1; i < 2; i++) {
let r = (i * x) % 2;
if (r == 1)
return i
else
throw "divisionError"
}
}
if (p1.degree < p2.degree)
return p1;
let f = p1.coefficients;
let g = p2.coefficients;
let g_lead_coef = g[g.length - 1];
let g_deg = p2.degree;
while (f.length >= g.length) {
let f_lead_coef = f[f.length - 1];
let tmp_coef = f_lead_coef * inverse(g_lead_coef);
let tmp_exp = f.length - 1 - g_deg;
let tmp = [];
for (let i = 0; i < tmp_exp; i++) {
tmp.push(0);
}
tmp.push(tmp_coef);
tmp_poly = new Polynomial(n, tmp);
let sub = multiply(p2, tmp_poly, n);
let tmp_f = [];
for (let i = 0; i < f.length; i++) {
for (let j = 0; j < sub.coefficients.length; j++) {
if (i == j)
tmp_f.push(f[i] - sub.coefficients[j]);
}
}
f = tmp_f.map(x => (x % n) + (x < 0 ? n : 0));
while (f && f[f.length - 1] === 0)
f.pop();
}
return new Polynomial(n, f);
}
exports.divide = divide;
function gcd(p1, p2) {
if (p2.coefficients.length === 0) {
return p1;
}
return gcd(p2, divide(p1, p2));
}
exports.gcd = gcd;
function Mono(n, c, mod) {
let coef = new Array(n).fill(0);
coef.push(c);
return new Polynomial(mod, coef);
}
exports.Mono = Mono;