DALGLI0/main.py
2018-06-27 23:04:58 +02:00

198 lines
4.6 KiB
Python

import itertools
class Poly:
def __init__(self, int_mod, elements):
self.elements = {}
self.int_mod = int_mod
i = len(elements) - 1
for e in reversed(elements):
self.elements[f"x{i}"] = e % self.int_mod
i -= 1
def __str__(self):
str_form = ""
deg = len(self.elements) - 1
for e in self.elements:
if self.elements[e] >= 0:
if e != f"x{deg}":
str_form += "+ "
else:
str_form += "- "
str_form += str(abs(self.elements[e]))
if e != "x0":
str_form += e[0] + "^" + e[1:] + " "
return str_form
def __mul__(self, other):
assert self.int_mod == other.int_mod
elements = {}
for e in self.elements:
for f in other.elements:
coefficient = self.elements[e] * other.elements[f]
degree = f"x{int(e[1:])+int(f[1:])}"
if elements.get(f"{degree}") is None:
elements[degree] = coefficient % self.int_mod
else:
elements[degree] += coefficient % self.int_mod
return Poly(self.int_mod, list(reversed(list(elements.values()))))
def __mod__(self, other):
elements = {}
def __pow__(self, power, modulo=None):
poly = Poly(self.int_mod, list(reversed(list(self.elements.values()))))
for i in range(power - 1):
poly *= poly
return poly
def __add__(self, other):
assert self.int_mod == other.int_mod
elements = self.elements.copy()
for f in other.elements:
if f in elements:
elements[f] += other.elements[f]
else:
elements[f] = other.elements[f]
els = {}
for i in reversed(range(len(elements))):
els[f"x{i}"] = elements[f"x{i}"]
return Poly(self.int_mod, list(reversed(list(els.values()))))
def __sub__(self, other):
assert self.int_mod == other.int_mod
elements = self.elements.copy()
for e in other.elements:
if e in elements:
elements[e] -= other.elements[e]
else:
elements[e] = -other.elements[e]
els = {}
for i in reversed(range(len(elements))):
els[f"x{i}"] = elements[f"x{i}"]
return Poly(self.int_mod, list(reversed(list(els.values()))))
def __truediv__(self, other):
if self.int_mod != other.int_mod:
raise Exception("Different modulo")
if other.is_empty():
raise ZeroDivisionError("Polynomial is empty")
fdeg = len(self.elements) - 1
sdeg = len(other.elements) - 1
while not other.is_empty():
coefficient = self.elements[f"x{fdeg}"] / other.elements[f"x{sdeg}"]
coefficient %= self.int_mod
degree = fdeg - sdeg
# print(self.elements["x2"])
# break
def is_empty(self):
for e in self.elements:
if self.elements[e] != 0:
return False
return True
class PolyIntField:
def __init__(self, int_mod, poly_mod):
self.int_modulo = int_mod
self.poly_modulo = Poly(int_mod, poly_mod)
product = list(itertools.product([x for x in range(0, int_mod)],
repeat=len(poly_mod) - 1))
self.elements = []
for p in product:
p = list(p)
p = [x % int_mod for x in p]
self.elements.append(Poly(int_mod, p))
def get_nilpotents(self):
nilpotents = []
# for element in self.elements:
if __name__ == "__main__":
p = Poly(5, [-4, 0, -2, 1])
# print(p)
# c = p * p
# print(c.elements)
# print(c)
# print(p ** 2)
# print(p)
# print(d)
# print(p)
# print(p + d)
d = Poly(5, [-3, 1])
g = Poly(5, [1, 2, 1])
print(d)
print(g)
print()
# print()
# print(g ** 2)
# print(d)
# print(g)
# # c = d * g
# print(g * d)
# print(d * g)
# print(g + d)
# print(d + g)
# print(d)
# print(g)
print(g - d)
print(d - g)
print()
print(d + g)
print(g + d)
# print(d)
# print(g)
# print(g - d)
# print(p / d)
# print(p.elements[0])
# a = PolyIntField(3, [1, 1, 2, 2])
# for e in a.elements:
# print(e.elements)
# print()
# print(a.elements[4])
# print(a.elements[8])
# print(a.elements[4] * a.elements[8])
# a.elements[3] / a.elements[1]