diff --git a/src/GroupAlgebras.jl b/src/GroupAlgebras.jl index ec13bcb..12ebdd2 100644 --- a/src/GroupAlgebras.jl +++ b/src/GroupAlgebras.jl @@ -1,5 +1,133 @@ module GroupAlgebras -# package code goes here +import Base: convert, show, isequal, == +import Base: +, -, *, // +import Base: size, length, norm, rationalize -end # module +export GroupAlgebraElement + + +immutable GroupAlgebraElement{T<:Number} + coefficients::AbstractVector{T} + product_matrix::Array{Int,2} + # basis::Array{Any,1} + + function GroupAlgebraElement(coefficients::AbstractVector, + product_matrix::Array{Int,2}) + + size(product_matrix, 1) == size(product_matrix, 2) || + throw(ArgumentError("Product matrix has to be square")) + new(coefficients, product_matrix) + end +end + +# GroupAlgebraElement(c,pm,b) = GroupAlgebraElement(c,pm) +GroupAlgebraElement{T}(c::AbstractVector{T},pm) = GroupAlgebraElement{T}(c,pm) + +convert{T<:Number}(::Type{T}, X::GroupAlgebraElement) = + GroupAlgebraElement(convert(AbstractVector{T}, X.coefficients), X.product_matrix) + +show{T}(io::IO, X::GroupAlgebraElement{T}) = print(io, + "Element of Group Algebra over $T of length $(length(X)):\n $(X.coefficients)") + + +function isequal{T, S}(X::GroupAlgebraElement{T}, Y::GroupAlgebraElement{S}) + if T != S + warn("Comparing elements with different coefficients Rings!") + end + X.product_matrix == Y.product_matrix || return false + X.coefficients == Y.coefficients || return false + return true +end + +(==)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = isequal(X,Y) + +function add{T<:Number}(X::GroupAlgebraElement{T}, Y::GroupAlgebraElement{T}) + X.product_matrix == Y.product_matrix || throw(ArgumentError( + "Elements don't seem to belong to the same Group Algebra!")) + return GroupAlgebraElement(X.coefficients+Y.coefficients, X.product_matrix) +end + +function add{T<:Number, S<:Number}(X::GroupAlgebraElement{T}, + Y::GroupAlgebraElement{S}) + warn("Adding elements with different base rings!") + return GroupAlgebraElement(+(promote(X.coefficients, Y.coefficients)...), + X.product_matrix) +end + +(+)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = add(X,Y) +(-)(X::GroupAlgebraElement) = GroupAlgebraElement(-X.coefficients, X.product_matrix) +(-)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = add(X,-Y) + +function algebra_multiplication{T<:Number}(X::AbstractVector{T}, Y::AbstractVector{T}, pm::Array{Int,2}) + result = zeros(X) + for (j,y) in enumerate(Y) + if y != zero(T) + for (i, index) in enumerate(pm[:,j]) + if X[i] != zero(T) + index == 0 && throw(ArgumentError("The product don't seem to belong to the span of basis!")) + result[index] += X[i]*y + end + end + end + end + return result +end + +function group_star_multiplication{T<:Number}(X::GroupAlgebraElement{T}, + Y::GroupAlgebraElement{T}) + X.product_matrix == Y.product_matrix || ArgumentError( + "Elements don't seem to belong to the same Group Algebra!") + result = algebra_multiplication(X.coefficients, Y.coefficients, X.product_matrix) + return GroupAlgebraElement(result, X.product_matrix) +end + +function group_star_multiplication{T<:Number, S<:Number}( + X::GroupAlgebraElement{T}, + Y::GroupAlgebraElement{S}) + S == T || warn("Multiplying elements with different base rings!") + return group_star_multiplication(promote(X,Y)...) +end + +(*){T<:Number, S<:Number}(X::GroupAlgebraElement{T}, + Y::GroupAlgebraElement{S}) = group_star_multiplication(X,Y); + +(*){T<:Number}(a::T, X::GroupAlgebraElement{T}) = GroupAlgebraElement( + a*X.coefficients, X.product_matrix) + +function scalar_multiplication{T<:Number, S<:Number}(a::T, + X::GroupAlgebraElement{S}) + promote_type(T,S) == S || warn("Scalar and coefficients are in different rings! Promoting result to $(promote_type(T,S))") + return GroupAlgebraElement(a*X.coefficients, X.product_matrix) +end + +(*){T<:Number}(a::T,X::GroupAlgebraElement) = scalar_multiplication(a, X) + +//{T<:Rational, S<:Rational}(X::GroupAlgebraElement{T}, a::S) = + GroupAlgebraElement(X.coefficients//a, X.product_matrix) + +//{T<:Rational, S<:Integer}(X::GroupAlgebraElement{T}, a::S) = + X//convert(T,a) + +length(X::GroupAlgebraElement) = length(X.coefficients) +size(X::GroupAlgebraElement) = size(X.coefficients) + +function norm(X::GroupAlgebraElement, p=2) + if p == 1 + return sum(abs(X.coefficients)) + elseif p == Inf + return max(abs(X.coefficients)) + else + return norm(X.coefficients, p) + end +end + +ɛ(X::GroupAlgebraElement) = sum(X.coefficients) + +function rationalize{T<:Integer, S<:Number}( + ::Type{T}, X::GroupAlgebraElement{S}; tol=eps(S)) + v = rationalize(T, X.coefficients, tol=tol) + return GroupAlgebraElement(v, X.product_matrix) +end + +end