mirror of
https://github.com/kalmarek/GroupRings.jl.git
synced 2025-01-01 11:45:28 +01:00
indentation and other trivial changes
This commit is contained in:
parent
c6b557080d
commit
65d2df3a40
@ -27,8 +27,6 @@ function mul!(result::GroupRingElem, X::GroupRingElem, Y::GroupRingElem)
|
|||||||
result = zero!(_dealias(result, X, Y))
|
result = zero!(_dealias(result, X, Y))
|
||||||
X_nzeros_idx = findall(!iszero, X.coeffs)
|
X_nzeros_idx = findall(!iszero, X.coeffs)
|
||||||
Y_nzeros_idx = findall(!iszero, Y.coeffs)
|
Y_nzeros_idx = findall(!iszero, Y.coeffs)
|
||||||
# X_nzeros_idx = [i for i in eachindex(X.coeffs) if X[i] != zero(eltype(X))]
|
|
||||||
# Y_nzeros_idx = [i for i in eachindex(Y.coeffs) if Y[i] != zero(eltype(Y))]
|
|
||||||
|
|
||||||
RG = parent(X)
|
RG = parent(X)
|
||||||
|
|
||||||
|
@ -7,7 +7,7 @@
|
|||||||
AbstractAlgebra.parent_type(::Type{GroupRingElem{T, GR}}) where {T, GR} = GR
|
AbstractAlgebra.parent_type(::Type{GroupRingElem{T, GR}}) where {T, GR} = GR
|
||||||
|
|
||||||
function AbstractAlgebra.elem_type(::Type{<:GroupRing{R,G,El}}) where {R,G,El}
|
function AbstractAlgebra.elem_type(::Type{<:GroupRing{R,G,El}}) where {R,G,El}
|
||||||
return GroupRingElem{elem_type(R), GroupRing{R,G,El}}
|
return GroupRingElem{elem_type(R), GroupRing{R,G,El}}
|
||||||
end
|
end
|
||||||
|
|
||||||
AbstractAlgebra.base_ring(RG::GroupRing) = RG.base_ring
|
AbstractAlgebra.base_ring(RG::GroupRing) = RG.base_ring
|
||||||
@ -18,11 +18,11 @@ AbstractAlgebra.isexact_type(::Type{<:GroupRingElem{T}}) where T = isexact_type(
|
|||||||
|
|
||||||
# hash(GroupRingElem) = 0x839279ac6f12f62a
|
# hash(GroupRingElem) = 0x839279ac6f12f62a
|
||||||
function Base.hash(X::GroupRingElem, h::UInt)
|
function Base.hash(X::GroupRingElem, h::UInt)
|
||||||
return ⊻(hash(X.coeffs, h), hash(parent(X), h), 0x839279ac6f12f62a)
|
return ⊻(hash(X.coeffs, h), hash(parent(X), h), 0x839279ac6f12f62a)
|
||||||
end
|
end
|
||||||
|
|
||||||
function Base.deepcopy_internal(X::GroupRingElem, dict::IdDict)
|
function Base.deepcopy_internal(X::GroupRingElem, dict::IdDict)
|
||||||
return parent(X)(deepcopy(X.coeffs))
|
return parent(X)(deepcopy(X.coeffs))
|
||||||
end
|
end
|
||||||
|
|
||||||
Base.zero(RG::GroupRing) = RG(0)
|
Base.zero(RG::GroupRing) = RG(0)
|
||||||
@ -30,7 +30,7 @@ Base.one(RG::GroupRing) = RG(1)
|
|||||||
Base.iszero(X::GroupRingElem{T}) where T = all(x == zero(T) for x in X.coeffs.nzval)
|
Base.iszero(X::GroupRingElem{T}) where T = all(x == zero(T) for x in X.coeffs.nzval)
|
||||||
|
|
||||||
function Base.isone(X::GroupRingElem{T}) where T
|
function Base.isone(X::GroupRingElem{T}) where T
|
||||||
idx = _identity_idx(parent(X))
|
idx = _identity_idx(parent(X))
|
||||||
X[idx] == one(T) || return false
|
X[idx] == one(T) || return false
|
||||||
all(X[i] == zero(T) for i in eachindex(X.coeffs) if i != idx) || return false
|
all(X[i] == zero(T) for i in eachindex(X.coeffs) if i != idx) || return false
|
||||||
return true
|
return true
|
||||||
@ -43,33 +43,33 @@ end
|
|||||||
###############################################################################
|
###############################################################################
|
||||||
|
|
||||||
Base.show(io::IO, RG::GroupRing) =
|
Base.show(io::IO, RG::GroupRing) =
|
||||||
print(io, "Group ring of $(RG.group) with coefficients in $(base_ring(RG))")
|
print(io, "Group ring of $(RG.group) with coefficients in $(base_ring(RG))")
|
||||||
|
|
||||||
function Base.show(io::IO, X::GroupRingElem{T}) where T
|
function Base.show(io::IO, X::GroupRingElem{T}) where T
|
||||||
RG = parent(X)
|
RG = parent(X)
|
||||||
if iszero(X)
|
if iszero(X)
|
||||||
print(io, "$(zero(T))*$(multiplicative_id(RG.group))")
|
print(io, "$(zero(T))*$(multiplicative_id(RG.group))")
|
||||||
elseif hasbasis(RG)
|
elseif hasbasis(RG)
|
||||||
suppX = supp(X)
|
suppX = supp(X)
|
||||||
elts = String[]
|
elts = String[]
|
||||||
|
|
||||||
elts = String[]
|
elts = String[]
|
||||||
sgn = ""
|
sgn = ""
|
||||||
for g in suppX
|
for g in suppX
|
||||||
coeff = X[g]
|
coeff = X[g]
|
||||||
if X[g] < 0
|
if X[g] < 0
|
||||||
sgn = " - "
|
sgn = " - "
|
||||||
coeff = -coeff
|
coeff = -coeff
|
||||||
end
|
end
|
||||||
push!(elts, sgn*string(coeff)*string(g))
|
push!(elts, sgn*string(coeff)*string(g))
|
||||||
sgn = " + "
|
sgn = " + "
|
||||||
end
|
end
|
||||||
str = join(elts, "")
|
str = join(elts, "")
|
||||||
print(io, str)
|
print(io, str)
|
||||||
else
|
else
|
||||||
@warn("Basis of the parent group ring is not defined, showing coeffs")
|
@warn("Basis of the parent group ring is not defined, showing coeffs")
|
||||||
show(io, MIME("text/plain"), X.coeffs)
|
show(io, MIME("text/plain"), X.coeffs)
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
AbstractAlgebra.needs_parentheses(X::GroupRingElem) = true
|
AbstractAlgebra.needs_parentheses(X::GroupRingElem) = true
|
||||||
@ -83,42 +83,42 @@ AbstractAlgebra.show_minus_one(::Type{<:GroupRingElem}) = true
|
|||||||
###############################################################################
|
###############################################################################
|
||||||
|
|
||||||
function ==(X::GroupRingElem{T}, Y::GroupRingElem{S}) where {T,S}
|
function ==(X::GroupRingElem{T}, Y::GroupRingElem{S}) where {T,S}
|
||||||
if promote_type(T,S) ≠ T || promote_type(T,S) ≠ S
|
if promote_type(T,S) ≠ T || promote_type(T,S) ≠ S
|
||||||
@warn "Comparing elements with incompatible coeffs Rings: $T and $S can be only compared as $(promote_type(T,S))"
|
@warn "Comparing elements with incompatible coeffs Rings: $T and $S can be only compared as $(promote_type(T,S))"
|
||||||
end
|
end
|
||||||
length(X.coeffs) == length(Y.coeffs) || return false
|
length(X.coeffs) == length(Y.coeffs) || return false
|
||||||
parent(X).group == parent(Y).group || return false
|
parent(X).group == parent(Y).group || return false
|
||||||
return all(x == y for (x,y) in zip(X.coeffs, Y.coeffs))
|
return all(x == y for (x,y) in zip(X.coeffs, Y.coeffs))
|
||||||
end
|
end
|
||||||
|
|
||||||
Base.isequal(X::GroupRingElem, Y::GroupRingElem) = X == Y
|
Base.isequal(X::GroupRingElem, Y::GroupRingElem) = X == Y
|
||||||
|
|
||||||
_equalorzero(x,y) = x == y || x == 0 || y == 0
|
_equalorzero(x,y) = x == 0 || y == 0 || x == y
|
||||||
|
|
||||||
function ==(A::GroupRing, B::GroupRing)
|
function ==(A::GroupRing, B::GroupRing)
|
||||||
A.group == B.group || return false
|
A.group == B.group || return false
|
||||||
# base_ring(A) == base_ring(B) || return false
|
# base_ring(A) == base_ring(B) || return false
|
||||||
|
|
||||||
bases = hasbasis(A) && hasbasis(B)
|
bases = hasbasis(A) && hasbasis(B)
|
||||||
caches = cachesmultiplication(A) && cachesmultiplication(B)
|
caches = cachesmultiplication(A) && cachesmultiplication(B)
|
||||||
|
|
||||||
if bases && caches
|
if bases && caches
|
||||||
length(A) == length(B) || return false
|
length(A) == length(B) || return false
|
||||||
size(A.pm) == size(B.pm) || return false
|
size(A.pm) == size(B.pm) || return false
|
||||||
all(A.basis[i] == B.basis[i] for i in eachindex(A.basis)) || return false
|
all(A.basis[i] == B.basis[i] for i = eachindex(A.basis)) || return false
|
||||||
all(_equalorzero(A.pm[i], B.pm[i]) for i in eachindex(A.pm)) || return false
|
all(_equalorzero(A.pm[i], B.pm[i]) for i=eachindex(A.pm)) || return false
|
||||||
return true
|
return true
|
||||||
elseif bases # && !caches
|
elseif bases # && !caches
|
||||||
length(A) == length(B) || return false
|
length(A) == length(B) || return false
|
||||||
all(A.basis[i] == B.basis[i] for i in eachindex(A.basis)) || return false
|
all(A.basis[i] == B.basis[i] for i in eachindex(A.basis)) || return false
|
||||||
return true
|
return true
|
||||||
elseif caches # && !bases
|
elseif caches # && !bases
|
||||||
size(A.pm) == size(B.pm) || return false
|
size(A.pm) == size(B.pm) || return false
|
||||||
all(A.pm[i] == B.pm[i] for i in eachindex(A.pm)) || return false
|
all(A.pm[i] == B.pm[i] for i in eachindex(A.pm)) || return false
|
||||||
return true
|
return true
|
||||||
else
|
else
|
||||||
return false
|
return false
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
###############################################################################
|
###############################################################################
|
||||||
@ -128,13 +128,13 @@ end
|
|||||||
###############################################################################
|
###############################################################################
|
||||||
|
|
||||||
function AbstractAlgebra.divexact_left(X::GroupRingElem, Y::GroupRingElem)
|
function AbstractAlgebra.divexact_left(X::GroupRingElem, Y::GroupRingElem)
|
||||||
isunit(Y) || throw(DivideError())
|
isunit(Y) || throw(DivideError())
|
||||||
return inv(Y)*X
|
return inv(Y)*X
|
||||||
end
|
end
|
||||||
|
|
||||||
function AbstractAlgebra.divexact_right(X::GroupRingElem, Y::GroupRingElem)
|
function AbstractAlgebra.divexact_right(X::GroupRingElem, Y::GroupRingElem)
|
||||||
isunit(Y) || throw(DivideError())
|
isunit(Y) || throw(DivideError())
|
||||||
return X*inv(Y)
|
return X*inv(Y)
|
||||||
end
|
end
|
||||||
|
|
||||||
###############################################################################
|
###############################################################################
|
||||||
@ -161,24 +161,25 @@ function AbstractAlgebra.promote_rule(u::Type{U}, x::Type{GREl}) where {T, GREl<
|
|||||||
return AbstractAlgebra.promote_rule(x, u)
|
return AbstractAlgebra.promote_rule(x, u)
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
||||||
function Base.rand(RG::GroupRing, density=0.05, args...)
|
function Base.rand(RG::GroupRing, density=0.05, args...)
|
||||||
l = length(RG)
|
l = length(RG)
|
||||||
|
|
||||||
if cachesmultiplication(RG)
|
if cachesmultiplication(RG)
|
||||||
nzind = rand(1:size(RG.pm, 1), floor(Int, density*l))
|
nzind = rand(1:size(RG.pm, 1), floor(Int, density*l))
|
||||||
else
|
else
|
||||||
nzind = rand(1:l, floor(Int, density*l))
|
nzind = rand(1:l, floor(Int, density*l))
|
||||||
end
|
end
|
||||||
|
|
||||||
nzval = [rand(base_ring(RG), args...) for _ in nzind]
|
nzval = [rand(base_ring(RG), args...) for _ in nzind]
|
||||||
|
|
||||||
return GroupRingElem(sparsevec(nzind, nzval, l), RG)
|
return GroupRingElem(sparsevec(nzind, nzval, l), RG)
|
||||||
end
|
end
|
||||||
|
|
||||||
function Base.isapprox(X::GroupRingElem{T}, Y::GroupRingElem{S};
|
function Base.isapprox(X::GroupRingElem{T}, Y::GroupRingElem{S};
|
||||||
atol::Real=sqrt(eps())) where {T,S}
|
atol::Real=sqrt(eps())) where {T,S}
|
||||||
parent(X) == parent(Y) || return false
|
parent(X) == parent(Y) || return false
|
||||||
return isapprox(X.coeffs, Y.coeffs, atol=atol)
|
return isapprox(X.coeffs, Y.coeffs, atol=atol)
|
||||||
end
|
end
|
||||||
|
|
||||||
Base.isapprox(X::GroupRingElem{T}, a::T; atol::Real=sqrt(eps())) where T = isapprox(X, RG(a))
|
Base.isapprox(X::GroupRingElem{T}, a::T; atol::Real=sqrt(eps())) where T = isapprox(X, RG(a))
|
||||||
@ -192,6 +193,6 @@ Base.isapprox(a::T, X::GroupRingElem{T}; atol::Real=sqrt(eps())) where T = isapp
|
|||||||
###############################################################################
|
###############################################################################
|
||||||
|
|
||||||
function AbstractAlgebra.isunit(X::GroupRingElem)
|
function AbstractAlgebra.isunit(X::GroupRingElem)
|
||||||
count(!iszero, X.coeffs) == 1 || return false
|
count(!iszero, X.coeffs) == 1 || return false
|
||||||
return isunit(X[supp(X)[1]])
|
return isunit(X[supp(X)[1]])
|
||||||
end
|
end
|
||||||
|
Loading…
Reference in New Issue
Block a user