1
0
mirror of https://github.com/kalmarek/GroupRings.jl.git synced 2024-11-13 05:00:27 +01:00

scalar functions for GrouRingElems: -, *, /, //

This commit is contained in:
kalmar 2017-05-16 18:41:12 +02:00
parent ba51f2ba0e
commit 7e1f0ebc46

View File

@ -107,8 +107,27 @@ function (==)(A::GroupRing, B::GroupRing)
return A.group == B.group
end
(-)(X::GroupRingElem) = GroupRingElem(-X.coeffs, parent(X))
(*){T<:Number}(a::T, X::GroupRingElem{T}) = GroupRingElem(
a*X.coeffs, parent(X))
function scalar_multiplication{T<:Number, S<:Number}(a::T,
X::GroupRingElem{S})
promote_type(T,S) == S || warn("Scalar and coeffs are in different rings! Promoting result to $(promote_type(T,S))")
return GroupRingElem(a*X.coeffs, parent(X))
end
(*){T<:Number}(a::T,X::GroupRingElem) = scalar_multiplication(a, X)
(/){T<:Number}(a::T, X::GroupRingElem) = scalar_multiplication(1/a, X)
(//){T<:Rational, S<:Rational}(X::GroupRingElem{T}, a::S) =
GroupRingElem(X.coeffs//a, parent(X))
(//){T<:Rational, S<:Integer}(X::GroupRingElem{T}, a::S) =
X//convert(T,a)
function add{T<:Number}(X::GroupRingElem{T}, Y::GroupRingElem{T})
@ -125,7 +144,6 @@ function add{T<:Number, S<:Number}(X::GroupRingElem{T},
return GroupRingElem(+(promote(X.coeffs, Y.coeffs)...), parent(X))
end
(-)(X::GroupAlgebraElement) = GroupAlgebraElement(-X.coefficients, X.product_matrix)
(+)(X::GroupRingElem, Y::GroupRingElem) = add(X,Y)
(-)(X::GroupRingElem, Y::GroupRingElem) = add(X,-Y)
@ -160,22 +178,9 @@ end
(*)(X::GroupRingElem, Y::GroupRingElem) = group_star_multiplication(X,Y)
(*){T<:Number}(a::T, X::GroupAlgebraElement{T}) = GroupAlgebraElement(
a*X.coefficients, X.product_matrix)
function scalar_multiplication{T<:Number, S<:Number}(a::T,
X::GroupAlgebraElement{S})
promote_type(T,S) == S || warn("Scalar and coefficients are in different rings! Promoting result to $(promote_type(T,S))")
return GroupAlgebraElement(a*X.coefficients, X.product_matrix)
end
(*){T<:Number}(a::T,X::GroupAlgebraElement) = scalar_multiplication(a, X)
//{T<:Rational, S<:Rational}(X::GroupAlgebraElement{T}, a::S) =
GroupAlgebraElement(X.coefficients//a, X.product_matrix)
//{T<:Rational, S<:Integer}(X::GroupAlgebraElement{T}, a::S) =
X//convert(T,a)
length(X::GroupAlgebraElement) = length(X.coefficients)
size(X::GroupAlgebraElement) = size(X.coefficients)