1
0
mirror of https://github.com/kalmarek/GroupRings.jl.git synced 2025-01-01 11:45:28 +01:00

make add! use addeq! when out is aliased with either of args

This commit is contained in:
kalmarek 2019-06-14 22:21:52 +02:00
parent cc7eb9b699
commit 810245b7c2

View File

@ -56,6 +56,9 @@ Perform te the addition `X + Y` and store the result in `result`.
* no checks on arguments parents (i.e. mathematical correctns) are performed * no checks on arguments parents (i.e. mathematical correctns) are performed
""" """
function add!(result::GroupRingElem, X::GroupRingElem, Y::GroupRingElem) function add!(result::GroupRingElem, X::GroupRingElem, Y::GroupRingElem)
result === X && return addeq!(result, Y)
result === Y && return addeq!(result, X)
result = _dealias(result, X, Y) result = _dealias(result, X, Y)
@inbounds for i in eachindex(result.coeffs) @inbounds for i in eachindex(result.coeffs)
result.coeffs[i] = X.coeffs[i] + Y.coeffs[i] result.coeffs[i] = X.coeffs[i] + Y.coeffs[i]
@ -184,7 +187,8 @@ function scalarmul(a::S, X::GroupRingElem{T}) where {S,T}
return scalarmul!(base_ring(parent(X))(a), deepcopy(X)) return scalarmul!(base_ring(parent(X))(a), deepcopy(X))
else else
RG = change_base_ring(parent(X), parent(a)) RG = change_base_ring(parent(X), parent(a))
@warn "Coefficient ring does not contain scalar $a;\nThe resulting GroupRingElem has coefficients in $(parent(a)) of type $(elem_type(parent(a)))." @warn "Coefficient ring does not contain scalar $a;
The resulting GroupRingElem has coefficients in $(parent(a)) of type $(elem_type(parent(a)))."
return scalarmul!(a, GroupRingElem(base_ring(RG).(X.coeffs), RG)) return scalarmul!(a, GroupRingElem(base_ring(RG).(X.coeffs), RG))
end end
end end
@ -196,12 +200,12 @@ end
*(X::GroupRingElem{S}, a::T) where {T, S} = scalarmul(a, X) *(X::GroupRingElem{S}, a::T) where {T, S} = scalarmul(a, X)
# deambiguations: # deambiguations:
*(a::Union{AbstractFloat, Integer, RingElem, Rational}, X::GroupRingElem) = scalarmul(a, X) *(a::RingElement, X::GroupRingElem) = scalarmul(a, X)
*(X::GroupRingElem, a::Union{AbstractFloat, Integer, RingElem, Rational}) = scalarmul(a, X) *(X::GroupRingElem, a::RingElement) = scalarmul(a, X)
# divisions # divisions
(/)(X::GroupRingElem, a) = inv(a)*X (/)(X::GroupRingElem, a) = inv(a)*X
(//)(X::GroupRingElem, a::Union{Integer, Rational}) = 1//a*X (//)(X::GroupRingElem, a::Union{Integer, Rational}) = inv(a)*X
############################################################################### ###############################################################################
# #