1
0
mirror of https://github.com/kalmarek/GroupRings.jl.git synced 2024-12-28 18:50:29 +01:00

Merge branch 'master' of github.com:kalmarek/GroupRings.jl

This commit is contained in:
kalmarek 2019-06-16 14:06:23 +02:00
commit 929269b941
3 changed files with 18 additions and 15 deletions

View File

@ -5,6 +5,7 @@ os:
- osx
julia:
- 1.0
- 1.1
- nightly
notifications:
email: true
@ -14,8 +15,6 @@ matrix:
- julia: nightly
script:
- julia -e 'using Pkg; pkg"add https://github.com/kalmarek/Groups.jl#enh/julia-v0.7"; Pkg.build(); Pkg.test(coverage=true);'
- julia -e 'using Pkg; pkg"add https://github.com/kalmarek/Groups.jl"; Pkg.build(); Pkg.test(coverage=true);'
after_success:
# push coverage results to Coveralls
- julia -e 'import Pkg; Pkg.add("Coverage"); using Coverage; Codecov.submit(process_folder())'
codecov: true

View File

@ -1 +1,9 @@
# GroupRings
[![Build Status](https://travis-ci.org/kalmarek/GroupRings.jl.svg?branch=master)](https://travis-ci.org/kalmarek/GroupRings.jl)
[![codecov](https://codecov.io/gh/kalmarek/GroupRings.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/kalmarek/GroupRings.jl)
Please have a look at [tests](https://github.com/kalmarek/GroupRings.jl/blob/master/test/runtests.jl) to see how to use this package. It depends on [AbstractAlgebra.jl](https://github.com/Nemocas/AbstractAlgebra.jl) and [Groups.jl](https://github.com/kalmarek/GroupRings.jl)
For an example applications have a look at our papers:
[1703.09680](https://arxiv.org/abs/1703.09680), [1712.07167](https://arxiv.org/abs/1712.07167) and [1812.03456](https://arxiv.org/abs/1812.03456).

View File

@ -301,11 +301,11 @@ function mul(a::T, X::GroupRingElem{S}) where {T<:Number, S<:Number}
return GroupRingElem(a.*X.coeffs, parent(X))
end
(*)(a::Number, X::GroupRingElem) = mul(a,X)
(*)(X::GroupRingElem, a::Number) = mul(a,X)
(*)(a::Number, X::GroupRingElem) = mul(a, X)
(*)(X::GroupRingElem, a::Number) = mul(a, X)
# disallow Rings to hijack *(::, ::GroupRingElem)
*(a::Union{AbstractFloat, Integer, RingElem, Rational}, X::GroupRingElem) = mul(a,X)
*(a::Union{AbstractFloat, Integer, RingElem, Rational}, X::GroupRingElem) = mul(a, X)
(/)(X::GroupRingElem, a) = 1/a*X
(//)(X::GroupRingElem, a::Union{Integer, Rational}) = 1//a*X
@ -375,10 +375,8 @@ function fmac!(result::AbstractVector{T},
end
@doc doc"""
GRmul!(result::AbstractVector{T},
X::AbstractVector,
Y::AbstractVector,
pm::Array{Int,2}) where {T<:Number}
GRmul!(result::AbstractVector{T}, X::AbstractVector, Y::AbstractVector,
pm::Matrix{<:Integer}) where {T<:Number}
> The most specialised multiplication for `X` and `Y` (intended for `coeffs` of
> `GroupRingElems`), using multiplication table `pm`.
> Notes:
@ -391,7 +389,7 @@ end
function GRmul!(result::AbstractVector{T},
X::AbstractVector,
Y::AbstractVector,
pm::Array{Int,2}) where {T<:Number}
pm::AbstractMatrix{<:Integer}) where {T<:Number}
z = zero(T)
result .= z
@ -399,9 +397,7 @@ function GRmul!(result::AbstractVector{T},
end
@doc doc"""
mul!{T}(result::GroupRingElem{T},
X::GroupRingElem,
Y::GroupRingElem)
mul!(result::GroupRingElem, X::GroupRingElem, Y::GroupRingElem)
> In-place multiplication for `GroupRingElem`s `X` and `Y`.
> `mul!` will make use the initialised entries of `pm` attribute of
> `parent(X)::GroupRing` (if available), and will compute and store in `pm` the