mirror of
https://github.com/kalmarek/GroupRings.jl.git
synced 2024-12-28 18:50:29 +01:00
move unary/binary operations to arithmetic.jl
This commit is contained in:
parent
006c1fcfb2
commit
a55d2e18f6
@ -125,210 +125,6 @@ function (==)(A::GroupRing, B::GroupRing)
|
||||
return true
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Scalar operators
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
(-)(X::GroupRingElem) = GroupRingElem(-X.coeffs, parent(X))
|
||||
|
||||
function mul!(a::T, X::GroupRingElem{T}) where {T<:Number}
|
||||
X.coeffs .*= a
|
||||
return X
|
||||
end
|
||||
|
||||
mul(a::T, X::GroupRingElem{T}) where {T<:Number} = GroupRingElem(a*X.coeffs, parent(X))
|
||||
|
||||
function mul(a::T, X::GroupRingElem{S}) where {T<:Number, S<:Number}
|
||||
TT = promote_type(T,S)
|
||||
TT == S || @warn("Scalar and coeffs are in different rings! Promoting result to $(TT)")
|
||||
return GroupRingElem(a.*X.coeffs, parent(X))
|
||||
end
|
||||
|
||||
(*)(a::Number, X::GroupRingElem) = mul(a, X)
|
||||
(*)(X::GroupRingElem, a::Number) = mul(a, X)
|
||||
|
||||
# disallow Rings to hijack *(::, ::GroupRingElem)
|
||||
*(a::Union{AbstractFloat, Integer, RingElem, Rational}, X::GroupRingElem) = mul(a, X)
|
||||
|
||||
(/)(X::GroupRingElem, a) = 1/a*X
|
||||
(//)(X::GroupRingElem, a::Union{Integer, Rational}) = 1//a*X
|
||||
|
||||
(^)(X::GroupRingElem, n::Integer) = Base.power_by_squaring(X, n)
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Binary operators
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
function addeq!(X::GroupRingElem, Y::GroupRingElem)
|
||||
X.coeffs += Y.coeffs
|
||||
return X
|
||||
end
|
||||
|
||||
function +(X::GroupRingElem{T}, Y::GroupRingElem{T}) where T
|
||||
return GroupRingElem(X.coeffs+Y.coeffs, parent(X))
|
||||
end
|
||||
|
||||
function +(X::GroupRingElem{S}, Y::GroupRingElem{T}) where {S, T}
|
||||
@warn("Adding elements with different coefficient rings, Promoting result to $(promote_type(T,S))")
|
||||
return GroupRingElem(X.coeffs+Y.coeffs, parent(X))
|
||||
end
|
||||
|
||||
-(X::GroupRingElem{T}, Y::GroupRingElem{T}) where T = addeq!((-Y), X)
|
||||
|
||||
function -(X::GroupRingElem{S}, Y::GroupRingElem{T}) where {S, T}
|
||||
@warn("Adding elements with different coefficient rings, Promoting result to $(promote_type(T,S))")
|
||||
addeq!((-Y), X)
|
||||
end
|
||||
|
||||
@doc doc"""
|
||||
fmac!(result::AbstractVector{T},
|
||||
X::AbstractVector,
|
||||
Y::AbstractVector,
|
||||
pm::Array{Int,2}) where {T<:Number}
|
||||
> Fused multiply-add for group ring coeffs using multiplication table `pm`.
|
||||
> The result of X*Y in GroupRing is added in-place to `result`.
|
||||
> Notes:
|
||||
> * this method will silently produce false results if `X[k]` is non-zero for
|
||||
> `k > size(pm,1)`.
|
||||
> * This method will fail if any zeros (i.e. uninitialised entries) are present
|
||||
> in `pm`.
|
||||
> Use with extreme care!
|
||||
"""
|
||||
|
||||
function fmac!(result::AbstractVector{T},
|
||||
X::AbstractVector,
|
||||
Y::AbstractVector,
|
||||
pm::Array{Int,2}) where {T<:Number}
|
||||
z = zero(T)
|
||||
s1 = size(pm,1)
|
||||
s2 = size(pm,2)
|
||||
|
||||
@inbounds for j in 1:s2
|
||||
if Y[j] != z
|
||||
for i in 1:s1
|
||||
if X[i] != z
|
||||
result[pm[i,j]] += X[i]*Y[j]
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
return result
|
||||
end
|
||||
|
||||
@doc doc"""
|
||||
GRmul!(result::AbstractVector{T}, X::AbstractVector, Y::AbstractVector,
|
||||
pm::Matrix{<:Integer}) where {T<:Number}
|
||||
> The most specialised multiplication for `X` and `Y` (intended for `coeffs` of
|
||||
> `GroupRingElems`), using multiplication table `pm`.
|
||||
> Notes:
|
||||
> * this method will silently produce false results if `X[k]` is non-zero for
|
||||
> `k > size(pm,1)`.
|
||||
> * This method will fail if any zeros (i.e. uninitialised entries) are present
|
||||
> in `pm`.
|
||||
> Use with extreme care!
|
||||
"""
|
||||
function GRmul!(result::AbstractVector{T},
|
||||
X::AbstractVector,
|
||||
Y::AbstractVector,
|
||||
pm::AbstractMatrix{<:Integer}) where {T<:Number}
|
||||
z = zero(T)
|
||||
result .= z
|
||||
|
||||
return fmac!(result, X, Y, pm)
|
||||
end
|
||||
|
||||
@doc doc"""
|
||||
mul!(result::GroupRingElem, X::GroupRingElem, Y::GroupRingElem)
|
||||
> In-place multiplication for `GroupRingElem`s `X` and `Y`.
|
||||
> `mul!` will make use the initialised entries of `pm` attribute of
|
||||
> `parent(X)::GroupRing` (if available), and will compute and store in `pm` the
|
||||
> remaining products necessary to perform the multiplication.
|
||||
> The method will fail with `KeyError` if product `X*Y` is not supported on
|
||||
> `parent(X).basis`.
|
||||
"""
|
||||
function mul!(result::GroupRingElem, X::GroupRingElem, Y::GroupRingElem)
|
||||
if result === X
|
||||
result = deepcopy(result)
|
||||
end
|
||||
T = eltype(result.coeffs)
|
||||
z = zero(T)
|
||||
result.coeffs .= z
|
||||
|
||||
RG = parent(X)
|
||||
|
||||
lX = length(X.coeffs)
|
||||
lY = length(Y.coeffs)
|
||||
|
||||
if isdefined(RG, :pm)
|
||||
s = size(RG.pm)
|
||||
k = findprev(!iszero, X.coeffs, lX)
|
||||
(k == nothing ? 0 : k) <= s[1] || throw("Element in X outside of support of parents product")
|
||||
k = findprev(!iszero, Y.coeffs, lY)
|
||||
(k == nothing ? 0 : k) <= s[2] || throw("Element in Y outside of support of parents product")
|
||||
|
||||
for j in 1:lY
|
||||
if Y.coeffs[j] != z
|
||||
for i in 1:lX
|
||||
if X.coeffs[i] != z
|
||||
if RG.pm[i,j] == 0
|
||||
RG.pm[i,j] = RG.basis_dict[RG.basis[i]*RG.basis[j]]
|
||||
end
|
||||
result.coeffs[RG.pm[i,j]] += X[i]*Y[j]
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
else
|
||||
for j in 1:lY
|
||||
if Y.coeffs[j] != z
|
||||
for i in 1:lX
|
||||
if X.coeffs[i] != z
|
||||
result[RG.basis[i]*RG.basis[j]] += X[i]*Y[j]
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
return result
|
||||
end
|
||||
|
||||
function *(X::GroupRingElem{T}, Y::GroupRingElem{T}, check::Bool=true) where {T<:Number}
|
||||
if check
|
||||
parent(X) == parent(Y) || throw("Elements don't seem to belong to the same Group Ring!")
|
||||
end
|
||||
if isdefined(parent(X), :basis)
|
||||
result = parent(X)(similar(X.coeffs))
|
||||
result = mul!(result, X, Y)
|
||||
else
|
||||
result = GRmul!(similar(X.coeffs), X.coeffs, Y.coeffs, parent(X).pm)
|
||||
result = GroupRingElem(result, parent(X))
|
||||
end
|
||||
return result
|
||||
end
|
||||
|
||||
function *(X::GroupRingElem{T}, Y::GroupRingElem{S}, check::Bool=true) where {T<:Number, S<:Number}
|
||||
if check
|
||||
parent(X) == parent(Y) || throw("Elements don't seem to belong to the same Group Ring!")
|
||||
end
|
||||
|
||||
TT = typeof(first(X.coeffs)*first(Y.coeffs))
|
||||
@warn("Multiplying elements with different base rings! Promoting the result to $TT.")
|
||||
|
||||
if isdefined(parent(X), :basis)
|
||||
result = parent(X)(similar(X.coeffs))
|
||||
result = convert(TT, result)
|
||||
result = mul!(result, X, Y)
|
||||
else
|
||||
result = convert(TT, similar(X.coeffs))
|
||||
result = RGmul!(result, X.coeffs, Y.coeffs, parent(X).pm)
|
||||
result = GroupRingElem(result, parent(X))
|
||||
end
|
||||
return result
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
|
265
src/arithmetic.jl
Normal file
265
src/arithmetic.jl
Normal file
@ -0,0 +1,265 @@
|
||||
###############################################################################
|
||||
#
|
||||
# Unsafe operators (NCRing interface)
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
@doc doc"""
|
||||
zero!(X::GroupRingElem)
|
||||
In-place set coefficients of `X` to `0`. The sparsity pattern of `X` will be preserved.
|
||||
"""
|
||||
zero!(X::GroupRingElem{T}) where T = ( fill!(X.coeffs, zero(T)); X )
|
||||
|
||||
@doc doc"""
|
||||
mul!(result::GroupRingElem, X::GroupRingElem, Y::GroupRingElem)
|
||||
Perform the multiplication `X * Y` and store the result in `result`.
|
||||
|
||||
`mul!` will make use the initialised entries of `pm` attribute of `parent(X)` (if available), and will compute (and cache in `parent(X).pm`) the remaining products as necessary.
|
||||
|
||||
# Notes:
|
||||
* `result` is zeroed before use
|
||||
* aliasing of `result` and `X` or `Y` is allowed (in the case a `similar` copy is created)
|
||||
* `mul!` will throw `BoundsError` if `X * Y` is not supported on `parent(X).basis`
|
||||
* no checks on arguments parents (i.e. mathematical correctns) are performed
|
||||
"""
|
||||
function mul!(result::GroupRingElem, X::GroupRingElem, Y::GroupRingElem)
|
||||
|
||||
result = zero!(_dealias(result, X, Y))
|
||||
X_nzeros_idx = findall(!iszero, X.coeffs)
|
||||
Y_nzeros_idx = findall(!iszero, Y.coeffs)
|
||||
# X_nzeros_idx = [i for i in eachindex(X.coeffs) if X[i] != zero(eltype(X))]
|
||||
# Y_nzeros_idx = [i for i in eachindex(Y.coeffs) if Y[i] != zero(eltype(Y))]
|
||||
|
||||
RG = parent(X)
|
||||
|
||||
if cachesmultiplication(RG)
|
||||
complete!(RG, X_nzeros_idx, Y_nzeros_idx)
|
||||
for j in Y_nzeros_idx
|
||||
for i in X_nzeros_idx
|
||||
result.coeffs[RG.pm[i,j]] += X[i]*Y[j]
|
||||
end
|
||||
end
|
||||
else
|
||||
for j in Y_nzeros_idx
|
||||
for i in X_nzeros_idx
|
||||
result[RG[i]*RG[j]] += X[i]*Y[j]
|
||||
end
|
||||
end
|
||||
end
|
||||
return result
|
||||
end
|
||||
@doc doc"""
|
||||
add!(result::GroupRingElem, X::GroupRingElem, Y::GroupRingElem)
|
||||
Perform te the addition `X + Y` and store the result in `result`.
|
||||
|
||||
# Notes:
|
||||
* `result` is zeroed before use
|
||||
* aliasing of `result` and `X` or `Y` is allowed (in the case a `similar` copy is created)
|
||||
* no checks on arguments parents (i.e. mathematical correctns) are performed
|
||||
"""
|
||||
function add!(result::GroupRingElem, X::GroupRingElem, Y::GroupRingElem)
|
||||
result = _dealias(result, X, Y)
|
||||
@inbounds for i in eachindex(result.coeffs)
|
||||
result.coeffs[i] = X.coeffs[i] + Y.coeffs[i]
|
||||
end
|
||||
return result
|
||||
end
|
||||
|
||||
@doc doc"""
|
||||
addeq!(X::GroupRingElem, Y::GroupRingElem)
|
||||
Add `Y` to `X` in-place (the result is stored in `X`).
|
||||
|
||||
# Notes:
|
||||
* no checks on arguments parents (i.e. mathematical correctns) are performed
|
||||
"""
|
||||
|
||||
function addeq!(X::GroupRingElem, Y::GroupRingElem)
|
||||
X.coeffs .+= Y.coeffs
|
||||
return X
|
||||
end
|
||||
|
||||
function addmul!(result::GroupRingElem, X::GroupRingElem, Y::GroupRingElem,
|
||||
tmp::GroupRingElem=similar(result))
|
||||
tmp = mul!(tmp, X, Y)
|
||||
result = addeq!(result, tmp)
|
||||
return result
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Arithmetic operations (NCRing interface)
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
-(X::GroupRingElem{T}) where T = GroupRingElem(-X.coeffs, parent(X))
|
||||
^(X::GroupRingElem, n::Integer) = Base.power_by_squaring(X, n)
|
||||
|
||||
function Base.inv(X::GroupRingElem)
|
||||
if isunit(X)
|
||||
g = supp(X)[1]
|
||||
i_g = eltype(X)(inv(X[g]))
|
||||
return scalarmul!(base_ring(parent(X))(i_g), parent(X)(inv(g)))
|
||||
end
|
||||
throw(DivideError())
|
||||
end
|
||||
|
||||
### Addition/Subtraction:
|
||||
|
||||
function +(X::GroupRingElem{T, GR}, Y::GroupRingElem{T, GR}) where {T, GR<:GroupRing}
|
||||
# @assert parent(X) == parent(Y)
|
||||
return add!(X, X, Y)
|
||||
end
|
||||
|
||||
function +(X::GroupRingElem{S}, Y::GroupRingElem{T}) where {S,T}
|
||||
# @assert parent(X) == parent(Y)
|
||||
result = _promote(X, Y)
|
||||
return add!(result, X, Y)
|
||||
end
|
||||
|
||||
# -Y creates a copy
|
||||
-(X::GroupRingElem{T,GR}, Y::GroupRingElem{T,GR}) where {T,GR<:GroupRing} = addeq!(-Y, X)
|
||||
|
||||
# X - Y => X + (-Y) for other parameters TODO: this allocates two elements instead of one
|
||||
|
||||
### Multiplication:
|
||||
|
||||
function _mul(result::GroupRingElem, X::GroupRingElem, Y::GroupRingElem)
|
||||
RG = parent(X)
|
||||
if hasbasis(RG)
|
||||
result = mul!(result, X, Y)
|
||||
else
|
||||
result.coeffs = _mul!(result.coeffs, X.coeffs, Y.coeffs, RG.pm)
|
||||
end
|
||||
return result
|
||||
end
|
||||
|
||||
function *(X::GroupRingElem{T,GR}, Y::GroupRingElem{T,GR}) where {T, GR<:GroupRing}
|
||||
# @assert parent(X) == parent(Y)
|
||||
return _mul(X, X, Y)
|
||||
end
|
||||
|
||||
function *(X::GroupRingElem{S}, Y::GroupRingElem{T}) where {S,T}
|
||||
# @assert parent(X) == parent(Y)
|
||||
result = _promote(X, Y)
|
||||
return _mul(result, X, Y)
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Scalar and Ad-hoc operators
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
### Addition/subtraction
|
||||
|
||||
function addeq!(X::GroupRingElem{T}, a::T) where T
|
||||
X[_identity_idx(parent(X))] += a
|
||||
return X
|
||||
end
|
||||
|
||||
function addeq!(X::GroupRingElem{T, GroupRing{R,G,El}}, g::El, v=1) where {T,R,G,El}
|
||||
@assert hasbasis(parent(X))
|
||||
X[g] += T(v)
|
||||
return X
|
||||
end
|
||||
|
||||
+(X::GroupRingElem{T}, a::T) where T<:RingElement = addeq!(deepcopy(X), a)
|
||||
+(a::T, X::GroupRingElem{T}) where T<:RingElement = addeq!(deepcopy(X), a)
|
||||
+(X::GroupRingElem{T, GroupRing{R, G, El}}, g::El) where {T, R, G, El} = addeq!(deepcopy(X), g)
|
||||
+(g::El, X::GroupRingElem{T, GroupRing{R, G, El}}) where {T, R, G, El} = addeq!(deepcopy(X), g)
|
||||
# +(X::GroupRingElem{T}, a::S) where {S,T} = addeq!(deepcopy(X), base_ring(X)(a))
|
||||
# +(a::S, X::GroupRingElem{T}) where {S,T} = addeq!(deepcopy(X), base_ring(X)(a))
|
||||
|
||||
-(X::GroupRingElem{T}, a::T) where T<:RingElement = addeq!(deepcopy(X), -a)
|
||||
-(a::T, X::GroupRingElem{T}) where T<:RingElement = addeq!(-X, a)
|
||||
-(X::GroupRingElem{T, GroupRing{R, G, El}}, g::El) where {T, R, G, El} = addeq!(deepcopy(X), g, -1)
|
||||
-(g::El, X::GroupRingElem{T, GroupRing{R, G, El}}) where {T, R, G, El} = addeq!(-X, g)
|
||||
# -(X::GroupRingElem{T}, a::S) where {S,T} = addeq!(deepcopy(X), -base_ring(X)(a))
|
||||
# -(a::S, X::GroupRingElem{T}) where {S,T} = addeq!(-X, base_ring(X)(a))
|
||||
|
||||
### Scalar multiplication/scalar division
|
||||
|
||||
scalarmul!(a::T, X::GroupRingElem{T}) where T<:RingElement = (X.coeffs .*= a; return X)
|
||||
|
||||
function scalarmul(a::S, X::GroupRingElem{T}) where {S,T}
|
||||
if promote_type(S, T) == T
|
||||
return scalarmul!(base_ring(parent(X))(a), deepcopy(X))
|
||||
else
|
||||
RG = change_base_ring(parent(X), parent(a))
|
||||
@warn "Coefficient ring does not contain scalar $a.\nThe result has coefficients in $(parent(a)) of type $(elem_type(parent(a)))."
|
||||
return scalarmul!(a, GroupRingElem(base_ring(RG).(X.coeffs), RG))
|
||||
end
|
||||
end
|
||||
|
||||
*(a::T, X::GroupRingElem{T}) where T = scalarmul!(a, deepcopy(X))
|
||||
# assuming commutativity of base_ring
|
||||
*(X::GroupRingElem{T}, a::T) where T = scalarmul!(a, deepcopy(X))
|
||||
*(a::T, X::GroupRingElem{S}) where {T, S} = scalarmul(a, X)
|
||||
*(X::GroupRingElem{S}, a::T) where {T, S} = scalarmul(a, X)
|
||||
|
||||
# deambiguations:
|
||||
*(a::Union{AbstractFloat, Integer, RingElem, Rational}, X::GroupRingElem) = scalarmul(a, X)
|
||||
*(X::GroupRingElem, a::Union{AbstractFloat, Integer, RingElem, Rational}) = scalarmul(a, X)
|
||||
|
||||
# divisions
|
||||
(/)(X::GroupRingElem, a) = inv(a)*X
|
||||
(//)(X::GroupRingElem, a::Union{Integer, Rational}) = 1//a*X
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Unsafe operators on coefficients
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
@doc doc"""
|
||||
_mul!(result::AbstractVector, X::AbstractVector, Y::AbstractVector, pm::AbstracctMatrix{<:Integer})
|
||||
Unsafe multiplication for group ring elements (represented by coefficient vectors `result`, `X` and `Y`) using the provided multiplication table `pm`.
|
||||
Performs the multiplication `X * Y` and stores the result in `result`.
|
||||
|
||||
# Notes:
|
||||
* aliasing of `result` and `X` or `Y` is allowed (in the case a `similar` copy is created)
|
||||
* `result` is zeroed before use
|
||||
* `BoundsError` is thrown if `X * Y` is not determined by `pm`
|
||||
* this method will silently produce false results if either `X[k]` or `Y[k]`
|
||||
is non-zero for `k > size(pm,1)`
|
||||
* use only if You know what you're doing!
|
||||
"""
|
||||
function _mul!(result::AbstractVector, X::AbstractVector, Y::AbstractVector,
|
||||
pm::AbstractMatrix{<:Integer})
|
||||
# this mul! is used for base-less multiplication
|
||||
if result === X || result === Y
|
||||
result = zero(result)
|
||||
else
|
||||
result .= zero(eltype(result))
|
||||
end
|
||||
return _addmul!(result, X, Y, pm)
|
||||
end
|
||||
|
||||
@doc doc"""
|
||||
_addmul!(result::AbstractVector, X::AbstractVector, Y::AbstractVector, pm::AbstractMatrix{<:Integer})
|
||||
Unsafe fused multiply-add for group ring elements (represented by coefficient vectors `X` and `Y`) using the provided multiplication table `pm`.
|
||||
Performs the multiplication `X * Y` and adds the result to `result` in-place.
|
||||
|
||||
# Notes:
|
||||
* aliasing of `result` and `X` or `Y` is NOT checked
|
||||
* `BoundsError` is thrown if `X * Y` is not determined by `pm`
|
||||
* this method will silently produce false results if either `X[k]` or `Y[k]`
|
||||
is non-zero for `k > size(pm,1)`
|
||||
* use only if You know what you're doing!
|
||||
"""
|
||||
|
||||
function _addmul!(result::AbstractVector, X::AbstractVector, Y::AbstractVector,
|
||||
pm::AbstractMatrix{<:Integer})
|
||||
zX = zero(eltype(X))
|
||||
zY = zero(eltype(Y))
|
||||
@inbounds for j in 1:size(pm,2)
|
||||
if Y[j] != zY
|
||||
for i in 1:size(pm,1)
|
||||
if X[i] != zX
|
||||
result[pm[i,j]] += X[i]*Y[j]
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
return result
|
||||
end
|
Loading…
Reference in New Issue
Block a user