using Test using AbstractAlgebra using GroupRings using SparseArrays @testset "GroupRings" begin @testset "Constructors: SymmetricGroup" begin G = SymmetricGroup(3) @test isa(GroupRing(G), AbstractAlgebra.NCRing) @test isa(GroupRing(G), GroupRing) RG = GroupRing(G) @test isdefined(RG, :basis) == true @test length(RG.basis) == 6 @test isdefined(RG, :basis_dict) == true @test isdefined(RG, :pm) == false @test isa(GroupRing(SymmetricGroup(6), rand(1:6, 6,6)), GroupRing) RG = GroupRing(G, cachedmul=true) @test isdefined(RG, :pm) == true @test RG.pm == zeros(Int, (6,6)) @test isa(complete!(RG), GroupRing) @test all(RG.pm .> 0) @test RG.pm == GroupRings.initializepm!(GroupRing(G, cachedmul=false), fill=true).pm @test RG.basis_dict == GroupRings.reverse_dict(collect(G)) @test isa(GroupRing(G, collect(G)), GroupRing) S = collect(G) pm = create_pm(S) @test isa(GroupRing(G, S), GroupRing) @test isa(GroupRing(G, S, pm), GroupRing) A = GroupRing(G, S) B = GroupRing(G, S, pm) @test RG == A @test RG == B end @testset "GroupRing constructors FreeGroup" begin using Groups F = FreeGroup(3) S = gens(F) append!(S, [inv(s) for s in S]) basis, sizes = Groups.wlmetric_ball(S, one(F), radius=4) d = GroupRings.reverse_dict(basis) @test_throws KeyError create_pm(basis) pm = create_pm(basis, d, sizes[2]) @test isa(GroupRing(F, basis, pm), GroupRing) @test isa(GroupRing(F, basis, d, pm), GroupRing) A = GroupRing(F, basis, pm) B = GroupRing(F, basis, d, pm) @test A == B RF = GroupRing(F, basis, cachedmul=true) @test count(!iszero, RF.pm) == 0 GroupRings.complete!(RF) @test count(!iszero, RF.pm) == 45469 g = zero(B) s = S[2] g[s] = 1 @test g == B(s) @test g[s^2] == 0 @test_throws KeyError g[s^10] end @testset "GroupRingElems constructors/basic manipulation" begin G = SymmetricGroup(3) RG = GroupRing(G, cachedmul=true) a = rand(6) @test isa(GroupRingElem(a, RG), GroupRingElem) @test isa(RG(a), GroupRingElem) @test all(isa(RG(g), GroupRingElem) for g in G) @test_throws String GroupRingElem([1,2,3], RG) @test isa(RG(G([2,3,1])), GroupRingElem) p = G([2,3,1]) a = RG(p) @test length(a) == 1 @test isa(a.coeffs, SparseVector) @test a.coeffs[5] == 1 @test a[5] == 1 @test a[p] == 1 @test string(a) == "(1,2,3)" @test string(-a) == " - 1(1,2,3)" @test RG([0,0,0,0,1,0]) == a s = G([1,2,3]) @test a[s] == 0 a[s] = 2 @test a.coeffs[1] == 2 @test a[1] == 2 @test a[s] == 2 @test string(a) == "2() + (1,2,3)" @test string(-a) == " - 2() - 1(1,2,3)" @test length(a) == 2 @testset "RSL(3,Z)" begin N = 3 halfradius = 2 M = MatrixAlgebra(zz, N) E(M, i,j) = (e_ij = one(M); e_ij[i,j] = 1; e_ij) S = [E(M, i,j) for i in 1:N for j in 1:N if i≠j] S = unique([S; inv.(S)]) E_R, sizes = Groups.wlmetric_ball(S, radius=2*halfradius) E_rdict = GroupRings.reverse_dict(E_R) pm = GroupRings.create_pm(E_R, E_rdict, sizes[halfradius]; twisted=true); @test GroupRing(M, E_R, E_rdict, pm) isa GroupRing end end @testset "Arithmetic" begin G = SymmetricGroup(3) RG = GroupRing(G, cachedmul=true) a = RG(ones(Int, order(G))) @testset "scalar operators" begin @test isa(-a, GroupRingElem) @test (-a).coeffs == -(a.coeffs) @test isa(2*a, GroupRingElem) @test eltype(2*a) == typeof(2) @test (2*a).coeffs == 2 .*(a.coeffs) ww = "Scalar and coeffs are in different rings! Promoting result to Float64" @test isa(2.0*a, GroupRingElem) @test eltype(2.0*a) == typeof(2.0) @test (2.0*a).coeffs == 2.0.*(a.coeffs) @test (a/2).coeffs == a.coeffs./2 b = a/2 @test isa(b, GroupRingElem) @test eltype(b) == typeof(1/2) @test (b/2).coeffs == 0.25*(a.coeffs) @test isa(convert(Rational{Int}, a), GroupRingElem) @test eltype(convert(Rational{Int}, a)) == Rational{Int} @test convert(Rational{Int}, a).coeffs == convert(Vector{Rational{Int}}, a.coeffs) b = convert(Rational{Int}, a) @test isa(b//4, GroupRingElem) @test eltype(b//4) == Rational{Int} @test isa(b//big(4), NCRingElem) @test eltype(b//(big(4)//1)) == Rational{BigInt} @test isa(a//1, GroupRingElem) @test eltype(a//1) == Rational{Int} @test (1.0a)//1 == (1.0a) end @testset "Additive structure" begin @test RG(ones(Int, order(G))) == sum(RG(g) for g in G) a = RG(ones(Int, order(G))) b = sum((-1)^parity(g)*RG(g) for g in G) @test 1/2*(a+b).coeffs == [1.0, 0.0, 1.0, 0.0, 1.0, 0.0] a = RG(1) + RG(perm"(2,3)") + RG(perm"(1,2,3)") b = RG(1) - RG(perm"(1,2)(3)") - RG(perm"(1,2,3)") @test a - b == RG(perm"(2,3)") + RG(perm"(1,2)(3)") + 2RG(perm"(1,2,3)") @test 1//2*2a == a @test a + 2a == (3//1)*a @test 2a - (1//1)*a == a end @testset "Multiplicative structure" begin for g in G, h in G a = RG(g) b = RG(h) @test a*b == RG(g*h) @test (a+b)*(a+b) == a*a + a*b + b*a + b*b end for g in G @test star(RG(g)) == RG(inv(g)) @test (one(RG)-RG(g))*star(one(RG)-RG(g)) == 2*one(RG) - RG(g) - RG(inv(g)) @test aug((one(RG)-RG(g))) == 0 end a = RG(1) + RG(perm"(2,3)") + RG(perm"(1,2,3)") b = RG(1) - RG(perm"(1,2)(3)") - RG(perm"(1,2,3)") @test a*b == mul!(a,a,b) @test aug(a) == 3 @test aug(b) == -1 @test aug(a)*aug(b) == aug(a*b) == aug(b*a) z = sum((one(RG)-RG(g))*star(one(RG)-RG(g)) for g in G) @test aug(z) == 0 @test supp(z) == parent(z).basis @test supp(RG(1) + RG(perm"(2,3)")) == [one(G), perm"(2,3)"] @test supp(a) == [perm"(3)", perm"(2,3)", perm"(1,2,3)"] end @testset "HPC multiplicative operations" begin G = SymmetricGroup(5) RG = GroupRing(G, cachedmul=true) RG2 = GroupRing(G, cachedmul=false) Z = zero(RG) W = zero(RG) for g in [rand(G) for _ in 1:30] X = RG(g) Y = -RG(inv(g)) for i in 1:10 X[rand(G)] += rand(1:3) Y[rand(G)] -= rand(1:3) end @test X*Y == RG2(X)*RG2(Y) == GroupRings.mul!(Z, X, Y) @test Z.coeffs == GroupRings.GRmul!(W.coeffs, X.coeffs, Y.coeffs, RG.pm) == W.coeffs @test (2*X*Y).coeffs == GroupRings.fmac!(W.coeffs, X.coeffs, Y.coeffs, RG.pm) == GroupRings.mul!(2, X*Y).coeffs end end end @testset "SumOfSquares in group rings" begin ∗ = star G = FreeGroup(["g", "h", "k", "l"]) S = G.(G.gens) S = [S; inv.(S)] ID = one(G) RADIUS=3 @time E_R, sizes = Groups.wlmetric_ball(S, ID, radius=2*RADIUS); @test sizes == [9, 65, 457, 3201, 22409, 156865] E_rdict = GroupRings.reverse_dict(E_R) pm = GroupRings.create_pm(E_R, E_rdict, sizes[RADIUS]; twisted=true); RG = GroupRing(G, E_R, E_rdict, pm) g = RG.basis[2] h = RG.basis[3] k = RG.basis[4] l = RG.basis[5] G = (1-RG(g)) @test G^2 == 2 - RG(g) - ∗(RG(g)) G = (1-RG(g)) H = (1-RG(h)) K = (1-RG(k)) L = (1-RG(l)) GH = (1-RG(g*h)) KL = (1-RG(k*l)) X = (2 - ∗(RG(g)) - RG(h)) Y = (2 - ∗(RG(g*h)) - RG(k)) @test -(2 - RG(g*h) - ∗(RG(g*h))) + 2G^2 + 2H^2 == X^2 @test (2 - RG(g*h) - ∗(RG(g*h))) == GH^2 @test -(2 - RG(g*h*k) - ∗(RG(g*h*k))) + 2GH^2 + 2K^2 == Y^2 @test -(2 - RG(g*h*k) - ∗(RG(g*h*k))) + 2(GH^2 - 2G^2 - 2H^2) + 4G^2 + 4H^2 + 2K^2 == Y^2 @test GH^2 - 2G^2 - 2H^2 == - X^2 @test -(2 - RG(g*h*k) - ∗(RG(g*h*k))) + 4G^2 + 4H^2 + 2K^2 == 2X^2 + Y^2 @test GH^2 == 2G^2 + 2H^2 - (2 - ∗(RG(g)) - RG(h))^2 @test KL^2 == 2K^2 + 2L^2 - (2 - ∗(RG(k)) - RG(l))^2 @test -(2 - ∗(RG(g*h*k*l)) - RG(g*h*k*l)) + 2*GH^2 + 2*KL^2 == (2 - ∗(RG(g*h)) - RG(k*l))^2 @test -(2 - ∗(RG(g*h*k*l)) - RG(g*h*k*l)) + 2(2G^2 + 2H^2 - (2 - ∗(RG(g)) - RG(h))^2) + 2(2K^2 + 2L^2 - (2 - ∗(RG(k)) - RG(l))^2) == (2 - ∗(RG(g*h)) - RG(k*l))^2 @test -(2 - ∗(RG(g*h*k*l)) - RG(g*h*k*l)) + 2(2G^2 + 2H^2) + 2(2K^2 + 2L^2) == (2 - ∗(RG(g*h)) - RG(k*l))^2 + 2(2 - ∗(RG(g)) - RG(h))^2 + 2(2 - ∗(RG(k)) - RG(l))^2 @test -(2 - ∗(RG(g*h*k*l)) - RG(g*h*k*l)) + 2(2 - ∗(RG(g*h*k)) - RG(g*h*k)) + 2L^2 == (2 - ∗(RG(g*h*k)) - RG(l))^2 @test 2 - ∗(RG(g*h*k)) - RG(g*h*k) == 2GH^2 + 2K^2 - (2 - ∗(RG(g*h)) - RG(k))^2 @test -(2 - ∗(RG(g*h*k*l)) - RG(g*h*k*l)) + 2(2GH^2 + 2K^2 - (2 - ∗(RG(g*h)) - RG(k))^2) + 2L^2 == (2 - ∗(RG(g*h*k)) - RG(l))^2 @test -(2 - ∗(RG(g*h*k*l)) - RG(g*h*k*l)) + 2(2GH^2 + 2K^2) + 2L^2 == (2 - ∗(RG(g*h*k)) - RG(l))^2 + 2(2 - ∗(RG(g*h)) - RG(k))^2 @test -(2 - ∗(RG(g*h*k*l)) - RG(g*h*k*l)) + 8G^2 + 8H^2 + 4K^2 + 2L^2 == (2 - ∗(RG(g*h*k)) - RG(l))^2 + 2(2 - ∗(RG(g*h)) - RG(k))^2 + 4(2 - ∗(RG(g)) - RG(h))^2 @test -(2 - ∗(RG(g*h*k*l)) - RG(g*h*k*l)) + 2GH^2 + 2KL^2 == (2 - ∗(RG(g*h)) - RG(k*l))^2 @test -(2 - ∗(RG(g*h*k*l)) - RG(g*h*k*l)) + 2(2G^2 + 2H^2) + 2(2K^2 + 2L^2) == (2 - ∗(RG(g*h)) - RG(k*l))^2 + 2(2 - ∗(RG(k)) - RG(l))^2 + 2(2 - ∗(RG(g)) - RG(h))^2 end end