module GroupRings using AbstractAlgebra import AbstractAlgebra: Group, NCRing, NCRingElem, parent, elem_type, parent_type, addeq!, mul! using SparseArrays using LinearAlgebra using Markdown import Base: convert, show, hash, ==, +, -, *, ^, //, /, length, getindex, setindex!, eltype, one, zero GroupOrNCRing = Union{AbstractAlgebra.Group, AbstractAlgebra.NCRing} GroupOrNCRingElem = Union{AbstractAlgebra.GroupElem, AbstractAlgebra.NCRingElem} ############################################################################### # # GroupRings / GroupRingsElem # ############################################################################### mutable struct GroupRing{Gr<:GroupOrNCRing, T<:GroupOrNCRingElem} <: NCRing group::Gr basis::Vector{T} basis_dict::Dict{T, Int} pm::Array{Int,2} function GroupRing(G::Gr, basis::Vector{T}; cachedmul::Bool=false) where {Gr, T} RG = new{Gr, T}(G, basis, reverse_dict(basis)) cachedmul && initializepm!(RG) return RG end function GroupRing(G::Gr, b::Vector{T}, b_d::Dict{T, Int}, pm::Array{Int,2}) where {Gr,T} return new{Gr, T}(G, b, b_d, pm) end function GroupRing(G::Gr, pm::Array{Int,2}) where {Gr} RG = new{Gr, elem_type(G)}(G) RG.pm = pm return RG end end mutable struct GroupRingElem{T, A<:AbstractVector, GR<:GroupRing} <: NCRingElem coeffs::A parent::GR function GroupRingElem{T, A, GR}(c::AbstractVector{T}, RG::GR, check=true) where {T, A, GR} if check if isdefined(RG, :basis) length(c) == length(RG.basis) || throw( "Can't create GroupRingElem -- lengths differ: length(c) = $(length(c)) != $(length(RG.basis)) = length(RG.basis)") else @warn("Basis of the GroupRing is not defined.") end end return new{T, A, GR}(c, RG) end end export GroupRing, GroupRingElem, complete!, create_pm, star, aug, supp ############################################################################### # # GroupRing / GroupRingElem constructors # ############################################################################### function GroupRingElem(c::AbstractVector, RG::GroupRing) return GroupRingElem{eltype(c), typeof(c), typeof(RG)}(c, RG) end function GroupRing(G::Generic.PermGroup; cachedmul::Bool=false) return GroupRing(G, vec(collect(G)), cachedmul=cachedmul) end function GroupRing(G::Group, basis::Vector, pm::Array{Int,2}) size(pm,1) == size(pm,2) || throw("pm must be square, got $(size(pm))") eltype(basis) == elem_type(G) || throw("Basis must consist of elements of $G") return GroupRing(G, basis, reverse_dict(basis), pm) end ############################################################################### # # Type and parent object methods # ############################################################################### elem_type(::Type{GroupRing}) = GroupRingElem eltype(::Type{GroupRingElem{T, A, Gr}}) where {T, A, Gr} = T parent(g::GroupRingElem) = g.parent parent_type(X::GroupRingElem) = typeof(parent(X)) import Base.promote_rule promote_rule(::Type{GroupRingElem{T}}, ::Type{GroupRingElem{S}}) where {T,S} = GroupRingElem{promote_type(T,S)} function convert(::Type{T}, X::GroupRingElem) where T<:Number return GroupRingElem(Vector{T}(X.coeffs), parent(X)) end ############################################################################### # # Parent object call overloads # ############################################################################### # sparse storage: zero(RG::GroupRing, T::Type=Int) = RG(T) one(RG::GroupRing, T::Type=Int) = RG(RG.group(), T) one(RG::GroupRing{<:AbstractAlgebra.NCRing}, T::Type=Int) = RG(one(RG.group), T) function (RG::GroupRing)(T::Type=Int) isdefined(RG, :basis) || throw("Can not coerce without basis of GroupRing") return GroupRingElem(spzeros(T,length(RG.basis)), RG) end function (RG::GroupRing)(i::Int, T::Type=Int) elt = RG(T) elt[RG.group()] = i return elt end function (RG::GroupRing{<:AbstractAlgebra.NCRing})(i::Int, T::Type=Int) elt = RG(T) elt[one(RG.group)] = i return elt end function (RG::GroupRing)(g::GroupOrNCRingElem, T::Type=Int) result = RG(T) result[RG.group(g)] = one(T) return result end function (RG::GroupRing{Gr,T})(V::Vector{T}, S::Type=Int) where {Gr, T} res = RG(S) for g in V res[g] += one(S) end return res end function (RG::GroupRing)(f::Function, X::GroupRingElem{T}) where T isdefined(RG, :basis) || throw("Can not coerce without basis of GroupRing") res = RG(T) for g in supp(X) res[f(g)] = X[g] end return res end # keep storage type function (RG::GroupRing)(x::AbstractVector{T}) where T isdefined(RG, :basis) || throw("Basis of GroupRing not defined. For advanced use the direct constructor of GroupRingElem is provided.") length(x) == length(RG.basis) || throw("Can not coerce to $RG: lengths differ") return GroupRingElem(x, RG) end function (RG::GroupRing)(X::GroupRingElem) RG == parent(X) || throw("Can not coerce!") return RG(X.coeffs) end ############################################################################### # # Basic manipulation && Array protocol # ############################################################################### function hash(X::GroupRingElem, h::UInt) return hash(X.coeffs, hash(parent(X), hash(GroupRingElem, h))) end function getindex(X::GroupRingElem, n::Int) return X.coeffs[n] end function getindex(X::GroupRingElem, g::GroupOrNCRingElem) return X.coeffs[parent(X).basis_dict[g]] end function setindex!(X::GroupRingElem, value, n::Int) X.coeffs[n] = value end function setindex!(X::GroupRingElem, value, g::GroupOrNCRingElem) RG = parent(X) if !(g in keys(RG.basis_dict)) g = (RG.group)(g) end X.coeffs[RG.basis_dict[g]] = value end Base.size(X::GroupRingElem) = size(X.coeffs) Base.IndexStyle(::Type{GroupRingElem}) = Base.LinearFast() dense(X::GroupRingElem{T, A}) where {T, A<:DenseVector} = X function dense(X::GroupRingElem{T, Sp}) where {T, Sp<:SparseVector} return parent(X)(Vector(X.coeffs)) end SparseArrays.sparse(X::GroupRingElem{T, Sp}) where {T, Sp<:SparseVector} = X function SparseArrays.sparse(X::GroupRingElem{T, A}) where {T, A<:Vector} return parent(X)(sparse(X.coeffs)) end ############################################################################### # # String I/O # ############################################################################### function show(io::IO, A::GroupRing) print(io, "Group Ring of $(A.group)") end function show(io::IO, X::GroupRingElem) RG = parent(X) T = eltype(X.coeffs) if X.coeffs == zero(X.coeffs) print(io, "$(zero(T))*$((RG.group)())") elseif isdefined(RG, :basis) non_zeros = ((X.coeffs[i], RG.basis[i]) for i in findall(!iszero, X.coeffs)) elts = String[] for (c,g) in non_zeros sgn = (sign(c)>=0 ? " + " : " - ") if c == T(1) coeff = "" else coeff = "$(abs(c))" end push!(elts, sgn*coeff*"$(g)") end str = join(elts, "") if sign(first(non_zeros)[1]) > 0 str = str[4:end] end print(io, str) else @warn("Basis of the parent Group is not defined, showing coeffs") show(io, MIME("text/plain"), X.coeffs) end end ############################################################################### # # Comparison # ############################################################################### function (==)(X::GroupRingElem, Y::GroupRingElem) if eltype(X.coeffs) != eltype(Y.coeffs) @warn("Comparing elements with different coeffs Rings!") end suppX = supp(X) suppX == supp(Y) || return false for g in suppX X[g] == Y[g] || return false end return true end function (==)(A::GroupRing, B::GroupRing) A.group == B.group || return false if isdefined(A, :basis) && isdefined(B, :basis) A.basis == B.basis || return false elseif isdefined(A, :pm) && isdefined(B, :pm) A.pm == B.pm || return false end return true end ############################################################################### # # Scalar operators # ############################################################################### (-)(X::GroupRingElem) = GroupRingElem(-X.coeffs, parent(X)) function mul!(a::T, X::GroupRingElem{T}) where T X.coeffs .*= a return X end mul(a::T, X::GroupRingElem{T}) where T = GroupRingElem(a*X.coeffs, parent(X)) function mul(a::T, X::GroupRingElem{S}) where {T<:Number, S} TT = promote_type(T,S) TT == S || @warn("Scalar and coeffs are in different rings! Promoting result to $(TT)") return GroupRingElem(a.*X.coeffs, parent(X)) end (*)(a::Number, X::GroupRingElem) = mul(a, X) (*)(X::GroupRingElem, a::Number) = mul(a, X) # disallow Rings to hijack *(::, ::GroupRingElem) *(a::Union{AbstractFloat, Integer, RingElem, Rational}, X::GroupRingElem) = mul(a, X) (/)(X::GroupRingElem, a) = 1/a*X (//)(X::GroupRingElem, a::Union{Integer, Rational}) = 1//a*X (^)(X::GroupRingElem, n::Integer) = Base.power_by_squaring(X, n) ############################################################################### # # Binary operators # ############################################################################### function addeq!(X::GroupRingElem, Y::GroupRingElem) X.coeffs += Y.coeffs return X end function +(X::GroupRingElem{T}, Y::GroupRingElem{T}) where T return GroupRingElem(X.coeffs+Y.coeffs, parent(X)) end function +(X::GroupRingElem{S}, Y::GroupRingElem{T}) where {S, T} @warn("Adding elements with different coefficient rings, Promoting result to $(promote_type(T,S))") return GroupRingElem(X.coeffs+Y.coeffs, parent(X)) end -(X::GroupRingElem{T}, Y::GroupRingElem{T}) where T = addeq!((-Y), X) function -(X::GroupRingElem{S}, Y::GroupRingElem{T}) where {S, T} @warn("Adding elements with different coefficient rings, Promoting result to $(promote_type(T,S))") addeq!((-Y), X) end @doc doc""" fmac!(result::AbstractVector{T}, X::AbstractVector, Y::AbstractVector, pm::Array{Int,2}) where T > Fused multiply-add for group ring coeffs using multiplication table `pm`. > The result of X*Y in GroupRing is added in-place to `result`. > Notes: > * this method will silently produce false results if `X[k]` is non-zero for > `k > size(pm,1)`. > * This method will fail if any zeros (i.e. uninitialised entries) are present > in `pm`. > Use with extreme care! """ function fmac!(result::AbstractVector{T}, X::AbstractVector, Y::AbstractVector, pm::Array{Int,2}) where T z = zero(T) s1 = size(pm,1) s2 = size(pm,2) @inbounds for j in 1:s2 if Y[j] != z for i in 1:s1 if X[i] != z result[pm[i,j]] += X[i]*Y[j] end end end end return result end @doc doc""" GRmul!(result::AbstractVector{T}, X::AbstractVector, Y::AbstractVector, pm::Matrix{<:Integer}) where T > The most specialised multiplication for `X` and `Y` (intended for `coeffs` of > `GroupRingElems`), using multiplication table `pm`. > Notes: > * this method will silently produce false results if `X[k]` is non-zero for > `k > size(pm,1)`. > * This method will fail if any zeros (i.e. uninitialised entries) are present > in `pm`. > Use with extreme care! """ function GRmul!(result::AbstractVector{T}, X::AbstractVector, Y::AbstractVector, pm::AbstractMatrix{<:Integer}) where T z = zero(T) result .= z return fmac!(result, X, Y, pm) end @doc doc""" mul!(result::GroupRingElem, X::GroupRingElem, Y::GroupRingElem) > In-place multiplication for `GroupRingElem`s `X` and `Y`. > `mul!` will make use the initialised entries of `pm` attribute of > `parent(X)::GroupRing` (if available), and will compute and store in `pm` the > remaining products necessary to perform the multiplication. > The method will fail with `KeyError` if product `X*Y` is not supported on > `parent(X).basis`. """ function mul!(result::GroupRingElem, X::GroupRingElem, Y::GroupRingElem) if result === X result = deepcopy(result) end T = eltype(result.coeffs) z = zero(T) result.coeffs .= z RG = parent(X) lX = length(X.coeffs) lY = length(Y.coeffs) if isdefined(RG, :pm) s = size(RG.pm) k = findprev(!iszero, X.coeffs, lX) (k == nothing ? 0 : k) <= s[1] || throw("Element in X outside of support of parents product") k = findprev(!iszero, Y.coeffs, lY) (k == nothing ? 0 : k) <= s[2] || throw("Element in Y outside of support of parents product") for j in 1:lY if Y.coeffs[j] != z for i in 1:lX if X.coeffs[i] != z if RG.pm[i,j] == 0 RG.pm[i,j] = RG.basis_dict[RG.basis[i]*RG.basis[j]] end result.coeffs[RG.pm[i,j]] += X[i]*Y[j] end end end end else for j in 1:lY if Y.coeffs[j] != z for i in 1:lX if X.coeffs[i] != z result[RG.basis[i]*RG.basis[j]] += X[i]*Y[j] end end end end end return result end function *(X::GroupRingElem{T}, Y::GroupRingElem{T}, check::Bool=true) where T if check parent(X) == parent(Y) || throw("Elements don't seem to belong to the same Group Ring!") end if isdefined(parent(X), :basis) result = parent(X)(similar(X.coeffs)) result = mul!(result, X, Y) else result = GRmul!(similar(X.coeffs), X.coeffs, Y.coeffs, parent(X).pm) result = GroupRingElem(result, parent(X)) end return result end function *(X::GroupRingElem{T}, Y::GroupRingElem{S}, check::Bool=true) where {T,S} if check parent(X) == parent(Y) || throw("Elements don't seem to belong to the same Group Ring!") end TT = typeof(first(X.coeffs)*first(Y.coeffs)) @warn("Multiplying elements with different base rings! Promoting the result to $TT.") if isdefined(parent(X), :basis) result = parent(X)(similar(X.coeffs)) result = convert(TT, result) result = mul!(result, X, Y) else result = convert(TT, similar(X.coeffs)) result = RGmul!(result, X.coeffs, Y.coeffs, parent(X).pm) result = GroupRingElem(result, parent(X)) end return result end ############################################################################### # # *-involution # ############################################################################### function star(X::GroupRingElem{T}) where T RG = parent(X) isdefined(RG, :basis) || throw("*-involution without basis is not possible") result = RG(T) for (i,c) in enumerate(X.coeffs) if c != zero(T) g = inv(RG.basis[i]) result[g] = c end end return result end ############################################################################### # # Misc # ############################################################################### length(X::GroupRingElem) = count(!iszero, X.coeffs) LinearAlgebra.norm(X::GroupRingElem, p::Int=2) = norm(X.coeffs, p) aug(X::GroupRingElem) = sum(X.coeffs) supp(X::GroupRingElem) = parent(X).basis[findall(!iszero, X.coeffs)] function reverse_dict(::Type{I}, iter) where I<:Integer length(iter) > typemax(I) && error("Can not produce reverse dict: $(length(iter)) is too large for $T") return Dict{eltype(iter), I}(x => i for (i,x) in enumerate(iter)) end reverse_dict(iter) = reverse_dict(Int, iter) function create_pm(basis::AbstractVector{T}, basis_dict::Dict{T, Int}, limit::Int=length(basis); twisted::Bool=false, check=true) where T product_matrix = zeros(Int, (limit,limit)) Threads.@threads for i in 1:limit x = basis[i] if twisted x = inv(x) end for j in 1:limit product_matrix[i,j] = basis_dict[x*basis[j]] end end check && check_pm(product_matrix, basis, twisted) return product_matrix end create_pm(b::AbstractVector{<:GroupOrNCRingElem}) = create_pm(b, reverse_dict(b)) function check_pm(product_matrix, basis, twisted=false) idx = findfirst(product_matrix' .== 0) if idx != nothing @warn("Product is not supported on basis") i,j = Tuple(idx) x = basis[i] if twisted x = inv(x) end throw(KeyError(x*basis[j])) end return true end function complete!(RG::GroupRing) isdefined(RG, :basis) || throw(ArgumentError("Provide basis for completion first!")) if !isdefined(RG, :pm) initializepm!(RG, fill=false) return RG end warning = false for idx in findall(RG.pm .== 0) i,j = Tuple(idx) g = RG.basis[i]*RG.basis[j] if haskey(RG.basis_dict, g) RG.pm[i,j] = RG.basis_dict[g] else if !warning warning = true end end end warning && @warn("Some products were not supported on basis") return RG end function initializepm!(RG::GroupRing; fill::Bool=false) isdefined(RG, :basis) || throw("For baseless Group Rings You need to provide pm.") isdefined(RG, :pm) && return RG if fill RG.pm = try create_pm(RG.basis, RG.basis_dict) catch err isa(err, KeyError) && throw("Product is not supported on basis, $err.") throw(err) end else RG.pm = zeros(Int, length(RG.basis), length(RG.basis)) end return RG end end # of module GroupRings