module GroupRings using Nemo import Nemo: Group, GroupElem, Ring import Base: convert, show, isequal, == import Base: +, -, *, // import Base: size, length, norm, rationalize ############################################################################### # # GroupRings / GroupRingsElem # ############################################################################### type GroupRing <: Ring group::Group pm::Array{Int,2} basis::Vector{GroupElem} basis_dict::Dict{GroupElem, Int} GroupRing(G::Group) = new(G) end type GroupRingElem{T<:Number} coeffs::AbstractVector{T} parent::GroupRing function GroupRingElem(coeffs::AbstractVector) return new(coeffs) end end export GroupRing, GroupRingElem ############################################################################### # # Type and parent object methods # ############################################################################### elem_type(::GroupRing) = GroupRingElem parent_type(::GroupRingElem) = GroupRing parent(g::GroupRingElem) = g.parent ############################################################################### # # GroupRing / GroupRingElem constructors # ############################################################################### GroupRingElem{T}(c::AbstractVector{T}, A::GroupRing) = GroupRingElem{T}(c,A) convert{T<:Number}(::Type{T}, X::GroupRingElem) = GroupRingElem(parent(X), convert(AbstractVector{T}, X.coeffs)) function GroupRing(G::Group, pm::Array{Int,2}) size(pm,1) == size(pm,2) || throw("pm must be of size (n,n), got $(size(pm))") return GroupRing(Group, pm) end function GroupRing(G::Group, pm::Array{Int,2}, basis::Vector) size(pm,1) == size(pm,2) || throw("pm must be of size (n,n), got $(size(pm))") eltype(basis) == elem_type(G) || throw("basis must consist of elements of $G") basis_dict = Dict(g => i for (i,g) in enumerate(basis)) return GroupRing(Group, pm, basis, basis_dict) end function GroupRing(G::Group; complete=false) A = GroupRing(Group) if complete complete(A) end return A end ############################################################################### # # Parent object call overloads # ############################################################################### function (A::GroupRing)(X::GroupRingElem) length(X) == length(A.basis) || throw("Can not coerce to $A: lengths differ") X.parent = A return X end function (A::GroupRing)(x::AbstractVector) length(x) == length(A.basis) || throw("Can not coerce to $A: lengths differ") return GroupRingElem(x, A) end ############################################################################### # # Basic manipulation # ############################################################################### function deepcopy_internal(X::GroupRingElem, dict::ObjectIdDict) return GroupRingElem(deepcopy(X.coeffs), parent(X)) end function hash(X::GroupRingElem, h::UInt) return hash(X.coeffs, hash(parent(X), h)) end ############################################################################### # # String I/O # ############################################################################### function show(io::IO, A::GroupRing) print(io, "GroupRing of $(A.group)") end function show(io::IO, X::GroupRingElem) T = eltype(X.coeffs) print(io, "Element of Group Algebra of $(parent(X)) over $T:\n $(X.coeffs)") end ############################################################################### # # Comparison # ############################################################################### function (==)(X::GroupRingElem, Y::GroupRingElem) parent(X) == parent(Y) || return false if eltype(X.coeffs) != eltype(S.coeffs) warn("Comparing elements with different coeffs Rings!") end X.coeffs == Y.coeffs || return false return true end function (==)(A::GroupRing, B::GroupRing) return A.group == B.group end ############################################################################### # # Scalar operators # ############################################################################### (-)(X::GroupRingElem) = GroupRingElem(-X.coeffs, parent(X)) (*){T<:Number}(a::T, X::GroupRingElem{T}) = GroupRingElem(a*X.coeffs, parent(X)) function scalar_multiplication{T<:Number, S<:Number}(a::T, X::GroupRingElem{S}) promote_type(T,S) == S || warn("Scalar and coeffs are in different rings! Promoting result to $(promote_type(T,S))") return GroupRingElem(a*X.coeffs, parent(X)) end end (*){T<:Number}(a::T,X::GroupRingElem) = scalar_multiplication(a, X) (/){T<:Number}(a::T, X::GroupRingElem) = scalar_multiplication(1/a, X) (//){T<:Rational, S<:Rational}(X::GroupRingElem{T}, a::S) = GroupRingElem(X.coeffs//a, parent(X)) (//){T<:Rational, S<:Integer}(X::GroupRingElem{T}, a::S) = X//convert(T,a) ############################################################################### # # Binary operators # ############################################################################### function add{T<:Number}(X::GroupRingElem{T}, Y::GroupRingElem{T}) parent(X) == parent(Y) || throw(ArgumentError( "Elements don't seem to belong to the same Group Algebra!")) return GroupRingElem(X.coeffs+Y.coeffs, parent(X)) end function add{T<:Number, S<:Number}(X::GroupRingElem{T}, Y::GroupRingElem{S}) parent(X) == parent(Y) || throw(ArgumentError( "Elements don't seem to belong to the same Group Algebra!")) warn("Adding elements with different base rings!") return GroupRingElem(+(promote(X.coeffs, Y.coeffs)...), parent(X)) end (+)(X::GroupRingElem, Y::GroupRingElem) = add(X,Y) (-)(X::GroupRingElem, Y::GroupRingElem) = add(X,-Y) function algebra_multiplication{T<:Number}(X::AbstractVector{T}, Y::AbstractVector{T}, pm::Array{Int,2}) result = zeros(X) for (j,y) in enumerate(Y) if y != zero(T) for (i, index) in enumerate(pm[:,j]) if X[i] != zero(T) index == 0 && throw(ArgumentError("The product don't seem to belong to the span of basis!")) result[index] += X[i]*y end end end end return result end function group_star_multiplication{T<:Number}(X::GroupRingElem{T}, Y::GroupRingElem{T}) parent(X) == parent(Y) || throw(ArgumentError( "Elements don't seem to belong to the same Group Algebra!")) result = algebra_multiplication(X.coeffs, Y.coeffs, X.pm) return GroupRingElem(result, parent(X)) end function group_star_multiplication{T<:Number, S<:Number}( X::GroupRingElem{T}, Y::GroupRingElem{S}) warn("Multiplying elements with different base rings!") return group_star_multiplication(promote(X,Y)...) end (*)(X::GroupRingElem, Y::GroupRingElem) = group_star_multiplication(X,Y) ############################################################################### # # Misc # ############################################################################### length(X::GroupRingElem) = length(X.coeffs) norm(X::GroupRingElem, p=2) = norm(X.coeffs, p) augmentation(X::GroupRingElem) = sum(X.coeffs) function rationalize{T<:Integer, S<:Number}(::Type{T}, X::GroupRingElem{S}; tol=eps(S)) v = rationalize(T, X.coeffs, tol=tol) return GroupRingElem(v, parent(X)) end function reverse_dict(a::AbstractVector) return Dict{eltype(a), Int}(x => i for (i,x) in enumerate(a)) end function create_pm{T<:GroupElem}(basis::Vector{T}, basis_dict::Dict{T, Int}, limit; twisted=false) product_matrix = zeros(Int, (limit,limit)) for i in 1:limit x = basis([i]) if twisted x = inv(x) end for j in 1:limit w = x*basis[j] product_matrix[i,j] = basis_dict[w] end end return product_matrix end function complete(A::GroupRing) isdefined(A, :basis) || A.basis = collect(elements(A.group)) isdefined(A, :basis_dict) || A.basis_dict = reverse_dict(A.basis) if !isdefined(A, :pm) A.pm = try create_pm(basis, basis_dict) catch err isa(err, KeyError) && throw("Product is not supported on basis!")) throw(err) end return A end function complete(X::GroupRingElem) isdefined(X, :parent) || throw("You have to define parent of X before!") complete(parent(X)) return X end end # of module GroupRings