module GroupRings using Nemo import Nemo: Group, GroupElem, Ring, RingElem, parent, elem_type, parent_type, mul!, addeq!, divexact import Base: convert, show, hash, ==, +, -, *, //, /, length, norm, rationalize, deepcopy_internal, getindex, setindex!, eltype, one, zero ############################################################################### # # GroupRings / GroupRingsElem # ############################################################################### type GroupRing{Gr<:Group, T<:GroupElem} <: Ring group::Gr basis::Vector{T} basis_dict::Dict{T, Int} pm::Array{Int,2} function GroupRing(G::Gr; initialise=true) A = new(G) if initialise complete(A) end return A end function GroupRing(G::Gr, basis::Vector{T}, basis_dict::Dict{T,Int}, pm::Array{Int,2}) return new(G, basis, basis_dict, pm) end end GroupRing{Gr<:Group}(G::Gr;initialise=true) = GroupRing{Gr, elem_type(G)}(G, initialise=initialise) GroupRing{Gr<:Group, T<:GroupElem}(G::Gr, b::Vector{T}, b_d::Dict{T,Int}, pm::Array{Int,2}) = GroupRing{Gr, T}(G, b, b_d, pm) type GroupRingElem{T<:Number} <: RingElem coeffs::AbstractVector{T} parent::GroupRing function GroupRingElem(c::AbstractVector{T}, RG::GroupRing, check=true) if check if isdefined(RG, :basis) length(c) == length(RG.basis) || throw( "Can't create GroupRingElem -- lengths differ: length(c) = $(length(c)) != $(length(RG.basis)) = length(RG.basis)") else warn("Basis of the GroupRing is not defined.") end end return new(c, RG) end end export GroupRing, GroupRingElem, complete, create_pm ############################################################################### # # Type and parent object methods # ############################################################################### elem_type(::GroupRing) = GroupRingElem parent_type(::GroupRingElem) = GroupRing parent_type(::Type{GroupRingElem}) = GroupRing eltype(X::GroupRingElem) = eltype(X.coeffs) parent{T}(g::GroupRingElem{T}) = g.parent Base.promote_rule{T<:Number,S<:Number}(::Type{GroupRingElem{T}}, ::Type{GroupRingElem{S}}) = GroupRingElem{promote_type(T,S)} function convert{T<:Number}(::Type{T}, X::GroupRingElem) return GroupRingElem(convert(AbstractVector{T}, X.coeffs), parent(X)) end ############################################################################### # # GroupRing / GroupRingElem constructors # ############################################################################### function GroupRingElem{T<:Number}(c::AbstractVector{T}, RG::GroupRing) return GroupRingElem{T}(c, RG) end function GroupRing(G::Group, pm::Array{Int,2}) size(pm,1) == size(pm,2) || throw("pm must be square, got $(size(pm))") RG = GroupRing(G, initialise=false) RG.pm = pm return RG end function GroupRing(G::Group, basis::Vector) basis_dict = reverse_dict(basis) pm = try create_pm(basis, basis_dict) catch err isa(err, KeyError) && throw("Products are not supported on basis") throw(err) end return GroupRing(G, basis, basis_dict, pm) end function GroupRing(G::Group, basis::Vector, pm::Array{Int,2}) size(pm,1) == size(pm,2) || throw("pm must be of size (n,n), got $(size(pm))") eltype(basis) == elem_type(G) || throw("basis must consist of elements of $G") basis_dict = reverse_dict(basis) return GroupRing(G, basis, basis_dict, pm) end ############################################################################### # # Parent object call overloads # ############################################################################### zero(RG::GroupRing, T::Type=Int) = RG(T) one(RG::GroupRing, T::Type=Int) = RG(RG.group(), T) function (RG::GroupRing)(i::Int, T::Type=Int) elt = RG(T) elt[RG.group()] = i return elt end function (RG::GroupRing)(T::Type=Int) isdefined(RG, :basis) || throw("Complete the definition of GroupRing first") return GroupRingElem(spzeros(T,length(RG.basis)), RG) end function (RG::GroupRing)(g::GroupElem, T::Type=Int) g = RG.group(g) result = RG(T) result[g] = one(T) return result end function (RG::GroupRing)(x::AbstractVector) length(x) == length(RG.basis) || throw("Can not coerce to $RG: lengths differ") result = RG(eltype(x)) result.coeffs = x return result end function (RG::GroupRing)(X::GroupRingElem) RG == parent(X) || throw("Can not coerce!") return RG(X.coeffs) end function (RG::GroupRing)(X::GroupRingElem, emb::Function) result = RG(eltype(X.coeffs)) T = typeof(X.coeffs) result.coeffs = T(result.coeffs) for g in parent(X).basis result[emb(g)] = X[g] end return result end ############################################################################### # # Basic manipulation && Array protocol # ############################################################################### function deepcopy_internal(X::GroupRingElem, dict::ObjectIdDict) return GroupRingElem(deepcopy(X.coeffs), parent(X)) end function hash(X::GroupRingElem, h::UInt) return hash(full(X.coeffs), hash(parent(X), hash(GroupRingElem, h))) end function getindex(X::GroupRingElem, n::Int) return X.coeffs[n] end function getindex(X::GroupRingElem, g::GroupElem) return X.coeffs[parent(X).basis_dict[g]] end function setindex!(X::GroupRingElem, value, n::Int) X.coeffs[n] = value end function setindex!(X::GroupRingElem, value, g::GroupElem) RG = parent(X) typeof(g) == elem_type(RG.group) || throw("$g is not an element of $(RG.group)") if !(g in keys(RG.basis_dict)) g = (RG.group)(g) end X.coeffs[RG.basis_dict[g]] = value end Base.size(X::GroupRingElem) = size(X.coeffs) Base.linearindexing{T<:GroupRingElem}(::Type{T}) = Base.LinearFast() ############################################################################### # # String I/O # ############################################################################### function show(io::IO, A::GroupRing) print(io, "Group Ring of $(A.group)") end function show(io::IO, X::GroupRingElem) RG = parent(X) if X.coeffs == zero(X.coeffs) T = eltype(X.coeffs) print(io, "$(zero(T))*$((RG.group)())") elseif isdefined(RG, :basis) non_zeros = ((X.coeffs[i], RG.basis[i]) for i in findn(X.coeffs)) elts = ("$(sign(c)> 0? " + ": " - ")$(abs(c))*$g" for (c,g) in non_zeros) str = join(elts, "")[2:end] if sign(first(non_zeros)[1]) > 0 str = str[3:end] end print(io, str) else warn("Basis of the parent Group is not defined, showing coeffs") show(io, MIME("text/plain"), X.coeffs) end end ############################################################################### # # Comparison # ############################################################################### function (==)(X::GroupRingElem, Y::GroupRingElem) parent(X) == parent(Y) || return false if eltype(X.coeffs) != eltype(Y.coeffs) warn("Comparing elements with different coeffs Rings!") end all(X.coeffs .== Y.coeffs) || return false return true end function (==)(A::GroupRing, B::GroupRing) A.group == B.group || return false if isdefined(A, :basis) && isdefined(B, :basis) A.basis == B.basis || return false else warn("Bases of GroupRings are not defined, comparing products mats.") end A.pm == B.pm || return false return true end ############################################################################### # # Scalar operators # ############################################################################### (-)(X::GroupRingElem) = GroupRingElem(-X.coeffs, parent(X)) mul{T<:Number}(a::T, X::GroupRingElem{T}) = GroupRingElem(a*X.coeffs, parent(X)) function mul{T<:Number, S<:Number}(a::T, X::GroupRingElem{S}) promote_type(T,S) == S || warn("Scalar and coeffs are in different rings! Promoting result to $(promote_type(T,S))") return GroupRingElem(a*X.coeffs, parent(X)) end (*)(a, X::GroupRingElem) = mul(a,X) (*)(X::GroupRingElem, a) = mul(a,X) # disallow Nemo.Rings to hijack *(::Integer, ::RingElem) (*){T<:Integer}(a::T, X::GroupRingElem) = mul(a,X) (/)(X::GroupRingElem, a) = 1/a*X function (//){T<:Integer, S<:Integer}(X::GroupRingElem{T}, a::S) U = typeof(X[1]//a) warn("Rational division: promoting result to $U") return convert(U, X)//a end (//){T<:Rational, S<:Rational}(X::GroupRingElem{T}, a::S) = GroupRingElem(X.coeffs//a, parent(X)) (//){T<:Rational, S<:Integer}(X::GroupRingElem{T}, a::S) = X//convert(T,a) ############################################################################### # # Binary operators # ############################################################################### function addeq!{T}(X::GroupRingElem{T}, Y::GroupRingElem{T}) X.coeffs .+= Y.coeffs return X end function add{T<:Number}(X::GroupRingElem{T}, Y::GroupRingElem{T}, check::Bool=true) if check parent(X) == parent(Y) || throw("Elements don't seem to belong to the same Group Ring!") end return GroupRingElem(X.coeffs+Y.coeffs, parent(X)) end function add{T<:Number, S<:Number}(X::GroupRingElem{T}, Y::GroupRingElem{S}, check::Bool=true) if check parent(X) == parent(Y) || throw("Elements don't seem to belong to the same Group Ring!") end warn("Adding elements with different base rings!") return GroupRingElem(+(promote(X.coeffs, Y.coeffs)...), parent(X)) end (+)(X::GroupRingElem, Y::GroupRingElem) = add(X,Y) (-)(X::GroupRingElem, Y::GroupRingElem) = add(X,-Y) function mul!{T}(result::AbstractVector{T}, X::AbstractVector, Y::AbstractVector, pm::Array{Int,2}) z = zero(T) result .= z for j in eachindex(Y) if Y[j] != z for i in 1:size(pm,1) if X[i] != z pm[i,j] == 0 && throw(ArgumentError("The product don't seem to be supported on basis!")) result[pm[i,j]] += X[i]*Y[j] end end end end end function mul!{T}(result::GroupRingElem{T}, X::GroupRingElem, Y::GroupRingElem) if result === X result = deepcopy(result) end z = zero(T) result.coeffs .= z for j in eachindex(Y.coeffs) if Y.coeffs[j] != z for i in eachindex(X.coeffs) if X.coeffs[i] != z result.coeffs[parent(X).pm[i,j]] += X[i]*Y[j] end end end end return result end function mul!{T<:Number}(result::GroupRingElem{T}, X::GroupRingElem, Y::GroupRingElem) if result === X result = deepcopy(result) end TT = typeof(first(X.coeffs)*first(Y.coeffs)) if TT != T warn("Type of the result $T does not contain type of the product ($TT), promoting.") result = convert(TT, result) end mul!(result.coeffs, X.coeffs, Y.coeffs, parent(X).pm) return result end function *{T<:Number, S<:Number}(X::GroupRingElem{T}, Y::GroupRingElem{S}, check::Bool=true) if true parent(X) == parent(Y) || throw("Elements don't seem to belong to the same Group Ring!") end TT = typeof(first(X.coeffs)*first(Y.coeffs)) warn("Multiplying elements with different base rings! Promoting the result to $TT.") result = mul!(result, X, Y) return result end function mul(X::AbstractVector, Y::AbstractVector, pm::Array{Int,2}) T = promote_type(eltype(X), eltype(Y)) result = zeros(T, X) mul!(result, Vector{T}(X), Vector{T}(Y), pm) return result end function divexact{T}(X::GroupRingElem{T}, Y::GroupRingElem{T}) if length(Y) != 1 throw("Can not divide by a non-primitive element $(Y)!") else idx = findfirst(Y) c = Y[idx] c == 0 || throw("Can not invert") g = parent(Y).basis[idx] return X*1//c*parent(Y)(inv(g)) end end ############################################################################### # # *-involution # ############################################################################### function star{T}(X::GroupRingElem{T}) RG = parent(X) isdefined(RG, :basis) || complete(RG) result = RG(T) for (i,c) in enumerate(X.coeffs) if c != zero(T) g = inv(RG.basis[i]) result[g] = c end end return result end ############################################################################### # # Misc # ############################################################################### length(X::GroupRingElem) = countnz(X.coeffs) norm(X::GroupRingElem, p=2) = norm(X.coeffs, p) augmentation(X::GroupRingElem) = sum(X.coeffs) function rationalize{T<:Integer, S<:Integer}(::Type{T}, X::GroupRingElem{S}) return convert(Rational{T}, X) end function rationalize{T<:Integer, S<:Number}(::Type{T}, X::GroupRingElem{S}; tol=eps(S)) v = rationalize(T, X.coeffs, tol=tol) return GroupRingElem(v, parent(X)) end function reverse_dict(iter) T = eltype(iter) return Dict{T, Int}(x => i for (i,x) in enumerate(iter)) end function create_pm{T<:GroupElem}(basis::Vector{T}, basis_dict::Dict{T, Int}, limit=length(basis); twisted=false) product_matrix = zeros(Int, (limit,limit)) for i in 1:limit x = basis[i] if twisted x = inv(x) end for j in 1:limit w = x*(basis[j]) product_matrix[i,j] = basis_dict[w] end end return product_matrix end create_pm{T<:GroupElem}(b::Vector{T}) = create_pm(b, reverse_dict(b)) function complete(A::GroupRing) if !isdefined(A, :basis) A.basis = [elements(A.group)...] end if !isdefined(A, :basis_dict) A.basis_dict = reverse_dict(A.basis) end if !isdefined(A, :pm) A.pm = try create_pm(A.basis, A.basis_dict) catch err isa(err, KeyError) && throw("Product is not supported on basis") throw(err) end end return A end end # of module GroupRings