1
0
mirror of https://github.com/kalmarek/GroupRings.jl.git synced 2024-11-19 06:30:27 +01:00
GroupRings.jl/test/runtests.jl
2018-09-24 00:31:01 +02:00

215 lines
5.9 KiB
Julia

using Test
using AbstractAlgebra
using GroupRings
using SparseArrays
@testset "GroupRings" begin
@testset "Constructors: PermutationGroup" begin
G = PermutationGroup(3)
@test isa(GroupRing(G), AbstractAlgebra.Ring)
@test isa(GroupRing(G), GroupRing)
RG = GroupRing(G)
@test isdefined(RG, :basis) == true
@test length(RG.basis) == 6
@test isdefined(RG, :basis_dict) == true
@test isdefined(RG, :pm) == false
@test isa(GroupRing(PermutationGroup(6), rand(1:6, 6,6)), GroupRing)
RG = GroupRing(G, fastm=true)
@test isdefined(RG, :pm) == true
@test RG.pm == zeros(Int, (6,6))
@test isa(complete!(RG), GroupRing)
@test all(RG.pm .> 0)
@test RG.pm == GroupRings.fastm!(GroupRing(G, fastm=false), fill=true).pm
@test RG.basis_dict == GroupRings.reverse_dict(collect(G))
@test isa(GroupRing(G, collect(G)), GroupRing)
S = collect(G)
pm = create_pm(S)
@test isa(GroupRing(G, S), GroupRing)
@test isa(GroupRing(G, S, pm), GroupRing)
A = GroupRing(G, S)
B = GroupRing(G, S, pm)
@test RG == A
@test RG == B
end
@testset "GroupRing constructors FreeGroup" begin
using Groups
F = FreeGroup(3)
S = gens(F)
append!(S, [inv(s) for s in S])
basis, sizes = Groups.generate_balls(S, F(), radius=4)
d = GroupRings.reverse_dict(basis)
@test_throws KeyError create_pm(basis)
pm = create_pm(basis, d, sizes[2])
@test isa(GroupRing(F, basis, pm), GroupRing)
@test isa(GroupRing(F, basis, d, pm), GroupRing)
A = GroupRing(F, basis, pm)
B = GroupRing(F, basis, d, pm)
@test A == B
RF = GroupRing(F, basis, d, create_pm(basis, d, check=false))
nz1 = count(!iszero, RF.pm)
@test nz1 > 1000
GroupRings.complete!(RF)
nz2 = count(!iszero, RF.pm)
@test nz2 > nz1
@test nz2 == 45469
g = B()
s = S[2]
g[s] = 1
@test g == B(s)
@test g[s^2] == 0
@test_throws KeyError g[s^10]
end
@testset "GroupRingElems constructors/basic manipulation" begin
G = PermutationGroup(3)
RG = GroupRing(G, fastm=true)
a = rand(6)
@test isa(GroupRingElem(a, RG), GroupRingElem)
@test isa(RG(a), GroupRingElem)
@test all(isa(RG(g), GroupRingElem) for g in G)
@test_throws String GroupRingElem([1,2,3], RG)
@test isa(RG(G([2,3,1])), GroupRingElem)
p = G([2,3,1])
a = RG(p)
@test length(a) == 1
@test isa(a.coeffs, SparseVector)
@test a.coeffs[5] == 1
@test a[5] == 1
@test a[p] == 1
@test string(a) == "1*(1,2,3)"
@test string(-a) == "- 1*(1,2,3)"
@test RG([0,0,0,0,1,0]) == a
s = G([1,2,3])
@test a[s] == 0
a[s] = 2
@test a.coeffs[1] == 2
@test a[1] == 2
@test a[s] == 2
@test string(a) == "2*() + 1*(1,2,3)"
@test string(-a) == "- 2*() - 1*(1,2,3)"
@test length(a) == 2
end
@testset "Arithmetic" begin
G = PermutationGroup(3)
RG = GroupRing(G, fastm=true)
a = RG(ones(Int, order(G)))
@testset "scalar operators" begin
@test isa(-a, GroupRingElem)
@test (-a).coeffs == -(a.coeffs)
@test isa(2*a, GroupRingElem)
@test eltype(2*a) == typeof(2)
@test (2*a).coeffs == 2 .*(a.coeffs)
ww = "Scalar and coeffs are in different rings! Promoting result to Float64"
@test isa(2.0*a, GroupRingElem)
@test_warn ww eltype(2.0*a) == typeof(2.0)
@test_warn ww (2.0*a).coeffs == 2.0.*(a.coeffs)
@test_warn ww (a/2).coeffs == a.coeffs./2
b = a/2
@test isa(b, GroupRingElem)
@test eltype(b) == typeof(1/2)
@test (b/2).coeffs == 0.25*(a.coeffs)
@test isa(convert(Rational{Int}, a), GroupRingElem)
@test eltype(convert(Rational{Int}, a)) == Rational{Int}
@test convert(Rational{Int}, a).coeffs ==
convert(Vector{Rational{Int}}, a.coeffs)
b = convert(Rational{Int}, a)
@test isa(b//4, GroupRingElem)
@test eltype(b//4) == Rational{Int}
@test isa(b//big(4), GroupElem)
@test eltype(b//(big(4)//1)) == Rational{BigInt}
@test isa(a//1, GroupRingElem)
@test eltype(a//1) == Rational{Int}
@test (1.0a)//1 == (1.0a)
end
@testset "Additive structure" begin
@test RG(ones(Int, order(G))) == sum(RG(g) for g in G)
a = RG(ones(Int, order(G)))
b = sum((-1)^parity(g)*RG(g) for g in G)
@test 1/2*(a+b).coeffs == [1.0, 0.0, 1.0, 0.0, 1.0, 0.0]
a = RG(1) + RG(perm"(2,3)") + RG(perm"(1,2,3)")
b = RG(1) - RG(perm"(1,2)(3)") - RG(perm"(1,2,3)")
@test a - b == RG(perm"(2,3)") + RG(perm"(1,2)(3)") + 2RG(perm"(1,2,3)")
@test 1//2*2a == a
@test a + 2a == (3//1)*a
@test 2a - (1//1)*a == a
end
@testset "Multiplicative structure" begin
for g in G, h in G
a = RG(g)
b = RG(h)
@test a*b == RG(g*h)
@test (a+b)*(a+b) == a*a + a*b + b*a + b*b
end
for g in G
@test star(RG(g)) == RG(inv(g))
@test (one(RG)-RG(g))*star(one(RG)-RG(g)) ==
2*one(RG) - RG(g) - RG(inv(g))
@test aug((one(RG)-RG(g))) == 0
end
a = RG(1) + RG(perm"(2,3)") + RG(perm"(1,2,3)")
b = RG(1) - RG(perm"(1,2)(3)") - RG(perm"(1,2,3)")
@test a*b == mul!(a,a,b)
@test aug(a) == 3
@test aug(b) == -1
@test aug(a)*aug(b) == aug(a*b) == aug(b*a)
z = sum((one(RG)-RG(g))*star(one(RG)-RG(g)) for g in G)
@test aug(z) == 0
@test supp(z) == parent(z).basis
@test supp(RG(1) + RG(perm"(2,3)")) == [G(), perm"(2,3)"]
@test supp(a) == [perm"(3)", perm"(2,3)", perm"(1,2,3)"]
end
end
end